【題目】若數列同時滿足:①對于任意的正整數
,
恒成立;②對于給定的正整數
,
對于任意的正整數
恒成立,則稱數列
是“
數列”.
(1)已知判斷數列
是否為“
數列”,并說明理由;
(2)已知數列是“
數列”,且存在整數
,使得
,
,
,
成等差數列,證明:
是等差數列.
【答案】(1)是(2)見解析
【解析】試題分析:(1)根據定義驗證兩個條件是否成立,由于函數為分段函數,所以分奇偶分別驗證(2)根據定義數列隔項成等差,再根據單調性確定公差相等,最后求各項通項,根據通項關系得數列通項,根據等差數列證結論
試題解析:(1)當為奇數時,
,所以
.
.
當為偶數時,
,所以
.
.
所以,數列是“
數列”.
(2)由題意可得: ,
則數列,
,
,
是等差數列,設其公差為
,
數列,
,
,
是等差數列,設其公差為
,
數列,
,
,
是等差數列,設其公差為
.
因為,所以
,
所以,
所以①,
②.
若,則當
時,①不成立;
若,則當
時,②不成立;
若,則①和②都成立,所以
.
同理得: ,所以
,記
.
設
,
則
.
同理可得: ,所以
.
所以是等差數列.
【另解】
,
,
,
以上三式相加可得: ,所以
,
所以
,
,
,
所以,所以
,
所以,數列是等差數列.
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分)已知橢圓(
)的半焦距為
,原點
到經過兩點
,
的直線的距離為
.
(Ⅰ)求橢圓的離心率;
(Ⅱ)如圖,是圓
的一條直徑,若橢圓
經過
,
兩點,求橢圓
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓,直線
.
(1)求直線所過定點A的坐標;
(2)求直線被圓C所截得的弦長最短時直線
的方程及最短弦長;
(3)已知點M(-3,4),在直線MC上(C為圓心),存在定點N(異于點M),滿足:對于圓C上任一點P,都有為一常數, 試求所有滿足條件的點N的坐標及該常數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義:如果一個數列從第二項起,后一項與前一項的和相等且為同一常數,這樣的數列叫“等和數列”,這個常數叫公和.給出下列命題:
①“等和數列”一定是常數數列;
②如果一個數列既是等差數列又是“等和數列”,則這個數列一定是常數列;
③如果一個數列既是等比數列又是“等和數列”,則這個數列一定是常數列;
④數列是“等和數列”且公和
,則其前
項之和
;
其中,正確的命題為__________.(請填出所有正確命題的序號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,過右焦點F的直線l與C相交于A、B兩點,當l的斜率為1時,坐標原點O到l的距離為2。
(1)求橢圓C的方程;
(2)橢圓C上是否存在一點P,使得當l繞F轉到某一位置時,有成立?若存在,求點P的坐標與直線l的方程;若不存在,說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對某校高三年級學生參加社區服務次數進行統計,隨機抽取M名學生作為樣本,得到這M名學生參加社區服務的次數.根據此數據作出了頻數與頻率的統計表如下,頻率分布直方圖如圖:
分組 | 頻數 | 頻率 |
[10,15) | 10 | 0.25 |
[15,20) | 24 | n |
[20,25) | m | p |
[25,30) | 2 | 0.05 |
合計 | M | 1 |
(1)求出表中M,p及圖中a的值;
(2)若該校高三學生有240人,試估計該校高三學生參加社區服務的次數在區間[10,15)內的人數;
(3)在所取樣本中,從參加社區服務的次數不少于20次的學生中任選2人,求至多一人參加社區服務次數在區間[25,30)內的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在四棱錐中,
為正三角形,平面
平面
,
,
,
.
(Ⅰ)求證:平面平面
;
(Ⅱ)求三棱錐的體積;
(Ⅲ)在棱上是否存在點
,使得
平面
?若存在,請確定點
的位置并證明;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學生參加4門學科的學業水平測試,每門得等級的概率都是
,該學生各學科等級成績彼此獨立.規定:有一門學科獲
等級加1分,有兩門學科獲
等級加2分,有三門學科獲
等級加3分,四門學科全獲
等級則加5分,記
表示該生的加分數,
表示該生獲
等級的學科門數與未獲
等級學科門數的差的絕對值.
(1)求的數學期望;
(2)求的分布列.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知集合A={x|2-a≤x≤2+a},B={x|x≤1或x≥4}.
(1)當a=3時,求A∩B;
(2)若a>0,且A∩B=,求實數a的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com