【題目】已知等差數列的前
項和為
,并且
,數列
滿足:
,記數列
的前
項和為
.
(1)求數列的通項公式
及前
項和為
;
(2)求數列的通項公式
及前
項和為
;
(3)記集合,若
的子集個數為16,求實數
的取值范圍.
【答案】(1);(2)
,
;(3)
【解析】
試題分析:(1)數列是等差數列,可把已知用
表示出來,列出方程組,解出
,從而得到通項公式和膠
項和
;(2)由已知得
,這是數列前后項的比值,因此可用連乘法求得通項
,即
,從而有
,它可看作是一個等差數列和一個等比數列的乘積,因此其前
項和用乘公比錯位相減法求得;(3)由(1)(2)求得
,不等式
恒成立,即
恒成立,只要求得
的最小值即可,先求出前面幾項
,觀察歸納猜想出
單調性并給出證明(可用
證明數列的單調性),從而可求得最小值,得范圍.
試題解析:(1)設數列的公差為
,由題意得
(2)由題意得
疊乘得
由題意得①
②
②-①得:
(3)由上面可得令
則
下面研究數列的單調性,
時,
即
單調遞減.
所以不等式解的個數為4,
.
科目:高中數學 來源: 題型:
【題目】如圖,已知矩形所在平面垂直于直角梯形
所在平面,平面
平面
,且
,且
.
(1)設點為棱
中點,在面
內是否存在點
,使得
平面
?若存在,請證明,若不存在,說明理由;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“x2-3x+2<0”是“-1<x<2”成立的______條件(在“充分不必要”,“必要不充分”,“充要”,“既不充分又不必要”中選一個填寫).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了了解某校學生喜歡吃辣是否與性別有關,隨機對此校100人進行調查,得到如下的列表:已知在全部100人中隨機抽取1人抽到喜歡吃辣的學生的概率為.
喜歡吃辣 | 不喜歡吃辣 | 合計 | |
男生 | 10 | ||
女生 | 20 | ||
合計 | 100 |
(1)請將上面的列表補充完整;
(2)是否有99.9%以上的把握認為喜歡吃辣與性別有關?說明理由:
下面的臨界值表供參考:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的右焦點為
,點
在橢圓上.
(1)求橢圓的方程;
(2)點在圓
上,且
在第一象限,過
作
的切線交橢圓于
兩點,問:
的周長是否為定值?若是,求出定值;若不是。說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=xln x.
(1)求函數f(x)的極值點;
(2)設函數g(x)=f(x)-a(x-1),其中a∈R,求函數g(x)在區間[1,e]上的最小值.(其中e為自然對數的底數).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,正四棱錐中底面邊長為
,側棱
與底面
所成角的正切值為
.
(1)求正四棱錐的外接球半徑;
(2)若E是PB中點,求異面直線PD與AE所成角的正切值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com