【題目】已知是函數
與
圖像上兩個不同的交點,則
的取值范圍為( )
A. B.
C.
D.
【答案】B
【解析】分析:把函數與
圖象上兩個不同的交點,轉化為方程a=xlnx的兩個解.利用導數研究函數y=xlnx的單調性,可得x1+x2的取值范圍,再由導數判定函數f(x)的單調性,即可求得f(x1+x2)的取值范圍.
詳解:令可得
,
∴,
是方程
的兩個解.
令,則
,
∴當時,
,當
時,
,
∴在(0,
)上單調遞減,在(
,+∞)上單調遞增,
∴的最小值為
.
又當時,h(x)<0,當
時,h(x)>0,
作出函數h(x)=xlnx的圖象如圖:
不妨設x1<x2,
由圖可知,0<x1<<x2<1.
∴
由,得
,
當x∈(0,)時,
,
∴f(x)在上為增函數,
又,f(1)=0,
∴f(x1+x2)的取值范圍為.
故選:B.
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分)一個盒子里裝有三張卡片,分別標記有數字,
,
,這三張卡片除標記的數字外完全相同。隨機有放回地抽取
次,每次抽取
張,將抽取的卡片上的數字依次記為
,
,
.
(Ⅰ)求“抽取的卡片上的數字滿足”的概率;
(Ⅱ)求“抽取的卡片上的數字,
,
不完全相同”的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[2019·濰坊期末]某鋼鐵加工廠新生產一批鋼管,為了了解這批產品的質量狀況,檢驗員隨機抽取了100件鋼管作為樣本進行檢測,將它們的內徑尺寸作為質量指標值,由檢測結果得如下頻率分布表和頻率分布直方圖:
分組 | 頻數 | 頻率 |
25.05~25.15 | 2 | 0.02 |
25.15~25.25 | ||
25.25~25.35 | 18 | |
25.35~25.45 | ||
25.45~25.55 | ||
25.55~25.65 | 10 | 0.1 |
25.65~25.75 | 3 | 0.03 |
合計 | 100 | 1 |
(1)求,
;
(2)根據質量標準規定:鋼管內徑尺寸大于等于25.75或小于25.15為不合格,鋼管尺寸在或
為合格等級,鋼管尺寸在
為優秀等級,鋼管的檢測費用為0.5元/根.
(i)若從和
的5件樣品中隨機抽取2根,求至少有一根鋼管為合格的概率;
(ii)若這批鋼管共有2000根,把樣本的頻率作為這批鋼管的頻率,有兩種銷售方案:
①對該批剩余鋼管不再進行檢測,所有鋼管均以45元/根售出;
②對該批剩余鋼管一一進行檢測,不合格產品不銷售,合格等級的鋼管50元/根,優等鋼管60元/根.
請你為該企業選擇最好的銷售方案,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量 =(sin(A﹣B),
,
=(1,2sinB),且
=﹣sin2C,其中A、B、C分別為△ABC的三邊a、b、c所對的角. (Ⅰ)求角C的大小;
(Ⅱ)若 ,且S△ABC=
,求邊c的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】關于函數,有下列說法:
①它的極大值點為-3,極小值點為3;②它的單調遞減區間為[-2,2];
③方程有且僅有3個實根時,
的取值范圍是(18,54).
其中正確的說法有( )個
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數{an}滿a1=0,an+1=an+2n,那a2016的值是( )
A.2014×2015
B.2015×2016
C.2014×2016
D.2015×2015
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
.
(1)判斷并證明函數的單調性;
(2)若函數為奇函數,求實數
的值;
(3)在(2)條件下,若對任意的正數,不等式
恒成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下表提供了某廠節能降耗技術改造后生產甲產品過程中記錄的產量(噸)與相應的生產能耗
(噸)標準煤的幾組對照數據:
3 | 4 | 5 | 6 | |
2.5 | 3 | 4 | 4.5 |
(1)請根據上表提供的數據,用最小二乘法求出關于
的線性回歸方程
;
(2)已知該廠技術改造前100噸甲產品能耗為90噸標準煤,試根據(1)求出的線性回歸方程,預測生產100噸甲產品的生產能耗比技術改造前降低多少噸標準煤?
(參考:)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com