【題目】如圖,矩形中,
,
為邊
的中點,將
繞直線
翻轉成
(
平面
),
為線段
的中點,則在
翻折過程中,①與平面
垂直的直線必與直線
垂直;②線段
的長恒為
③異面直線
與
所成角的正切值為
④當三棱錐的體積最大時,三棱錐
外接球的體積是
.上面說法正確的所有序號是( )
A.①②④B.①③④C.②③D.①④
科目:高中數學 來源: 題型:
【題目】已知:在長方體中,
,點
是線段
上的一個動點,則①
的最小值等于__________;②直線
與平面
所成角的正切值的取值范圍為____________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在一個有窮數列的每相鄰兩項之間插入這兩項的和,形成新的數列,我們把這樣的操作稱為該數列的一次“Z拓展”.如數列1,2第1次“Z拓展”后得到數列1,3,2,第2次“Z拓展”后得到數列1,4,3,5,2.設數列a,b,c經過第n次“Z拓展”后所得數列的項數記為Pn,所有項的和記為Sn.
(1)求P1,P2;
(2)若Pn≥2020,求n的最小值;
(3)是否存在實數a,b,c,使得數列{Sn}為等比數列?若存在,求a,b,c滿足的條件;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐O﹣ABCD的底面是邊長為1的菱形,OA=2,∠ABC=60°,OA⊥平面ABCD,M、N分別是OA、BC的中點.
(1)求證:直線MN∥平面OCD;
(2)求點M到平面OCD的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】平面直角坐標系中,過橢圓
:
右焦點的直線
交
于
,
兩點,且橢圓
的離心率為
.
(1)求橢圓的方程;
(2),
為
上的兩點,若四邊形
的對角線
,求四邊形
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,過橢圓
的焦點且垂直于
軸的直線被橢圓
截得的弦長為
.
(1)求橢圓的方程;
(2)設點均在橢圓
上,點
在拋物線
上,若
的重心為坐標原點
,且
的面積為
,求點
的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司人數眾多
為鼓勵員工利用網絡進行營銷,準備為員工辦理手機流量套餐.為了解員工手機流量使用情況,按照男員工和女員工
的比例分層抽樣,得到
名員工的月使用流量
(單位:
)的數據,其頻率分布直方圖如圖所示.
(1)求的值,并估計這
名員工月使用流量的平均值
(同一組中的數據用中點值代表
;
(2)若將月使用流量在以上(含
)的員工稱為“手機營銷達人”,填寫下面的
列聯表,能否有超過
的把握認為“成為手機營銷達人與員工的性別有關”;
男員工 | 女員工 | 合計 | |
手機營銷達人 | 5 | ||
非手機營銷達人 | |||
合計 | 200/span> |
參考公式及數據:,其中
.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
(3)若這名員工中有
名男員工每月使用流量在
,從每月使用流量在
的員工中隨機抽取名
進行問卷調查,記女員工的人數為
,求
的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司計劃投資開發一種新能源產品,預計能獲得10萬元1000萬元的收益.現準備制定一個對開發科研小組的獎勵方案:獎金
(單位:萬元)隨收益
(單位:萬元)的增加而增加,且獎金總數不超過9萬元,同時獎金總數不超過收益的
.
(Ⅰ)若建立獎勵方案函數模型,試確定這個函數的定義域、值域和
的范圍;
(Ⅱ)現有兩個獎勵函數模型:①;②
.試分析這兩個函數模型是否符合公司的要求?請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com