【題目】如圖,四棱錐O﹣ABCD的底面是邊長為1的菱形,OA=2,∠ABC=60°,OA⊥平面ABCD,M、N分別是OA、BC的中點.
(1)求證:直線MN∥平面OCD;
(2)求點M到平面OCD的距離.
【答案】(1)證明見解析(2)
【解析】
(1)取OD的中點P,連接PC、PM,由三角形的中位線定理可得PMNC是平行四邊形,得MN∥PC,再由直線與平面平行的判定可得直線MN∥平面OCD;
(2)連接ON、ND,設點M到平面OCD的距離為d,可得點N到平面OCD的距離為d,然后利用等體積法求點M到平面OCD的距離.
(1)證明:取OD的中點P,連接PC、PM,
∵M、N分別是OA、BC的中點,∴PM∥AD,且,NC∥AD,且
,
∴PM∥NC,且PM=NC,則PMNC是平行四邊形,得MN∥PC,
∵PC平面OCD,MN平面OCD,
∴直線MN∥平面OCD;
(2)解:連接ON、ND,設點M到平面OCD的距離為d,
由(1)得,點N到平面OCD的距離為d,
設三棱錐O﹣CDN的體積為V,則,
依題意,,
∵AC=AD=CD=1,∴,則
.
由,得點M到平面OCD的距離
.
科目:高中數學 來源: 題型:
【題目】如圖,橢圓的長軸長為
,點
、
、
為橢圓上的三個點,
為橢圓的右端點,
過中心
,且
,
.
(1)求橢圓的標準方程;
(2)設、
是橢圓上位于直線
同側的兩個動點(異于
、
),且滿足
,試討論直線
與直線
斜率之間的關系,并求證直線
的斜率為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】過直線y=﹣1上的動點A(a,﹣1)作拋物線y=x2的兩切線AP,AQ,P,Q為切點.
(1)若切線AP,AQ的斜率分別為k1,k2,求證:k1k2為定值.
(2)求證:直線PQ過定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如果方程y|y|=1所對應的曲線與函數y=f(x)的圖象完全重合,那么對于函數y=f(x)有如下結論:
①函數f(x)在R上單調遞減;
②y=f(x)的圖象上的點到坐標原點距離的最小值為1;
③函數f(x)的值域為(﹣∞,2];
④函數F(x)=f(x)+x有且只有一個零點.
其中正確結論的序號是_____.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,矩形中,
,
為邊
的中點,將
繞直線
翻轉成
(
平面
),
為線段
的中點,則在
翻折過程中,①與平面
垂直的直線必與直線
垂直;②線段
的長恒為
③異面直線
與
所成角的正切值為
④當三棱錐的體積最大時,三棱錐
外接球的體積是
.上面說法正確的所有序號是( )
A.①②④B.①③④C.②③D.①④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,過點P(1,2)的直線l的參數方程為為參數).以原點O為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為
.
(1)求直線l的普通方程和曲線C的直角坐標方程;
(2)若直線l與曲線C相交于M,N兩點,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,橢圓
的左右焦點分別為的
、
,離心率為
;過拋物線
焦點
的直線交拋物線于
、
兩點,當
時,
點在
軸上的射影為
。連結
并延長分別交
于
、
兩點,連接
;
與
的面積分別記為
,
,設
.
(Ⅰ)求橢圓和拋物線
的方程;
(Ⅱ)求的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com