【題目】已知函數.
(1)若對任意的,都有
恒成立,求
的最小值;
(2)設,若
為曲線
上的兩個不同的點,滿足
,且
,使得曲線
在點
處的切線與直線
平行,求證:
.
【答案】(1)1;(2)證明見解析
【解析】
(1) 對任意的x∈[0,+∞),都有f(x)≥g(x)恒成立aln(x+1)﹣x.
令h(x)=aln(x+1)﹣x(x≥0).利用導數的運算法則可得h′(x)
.
分類討論:當a≥1時,當a<1時,只要驗證最小值是否大于0即可得出.
(2)p(x)=f(x﹣1)=alnx,kAB.利用導數的運算法則可得
.由于曲線y=f(x)在x3處的切線與直線AB平行,可得
.利用p′(x)在定義域內單調性質要證:x3
.即證明
.即證明
.變形可得
,令
,則t>1.要證明的不等式等價于
(t+1)lnt>2(t﹣1).構造函數q(t)=(t+1)lnt﹣2(t﹣1),(t>1).利用導數研究其單調性即可證明.
(1)恒成立
恒成立,
令,
則,
(i)若,則
恒成立,
函數
在
為單調遞增函數,
恒成立,又
,
符合條件.
(ii)若,由
,可得
,
解得和
(舍去),
當時,
;
當時,
;
∴,這與h(x)≥0相矛盾,應舍去.
綜上,,
的最小值為1.
(2),
,
又,
,
,
由,易知其在定義域內為單調遞減函數,
欲證證明
,
即,
變形可得:,
令,原不等式等價于
,
等價于,
構造函數,
則,
令,
當時,
,
在
上為單調遞增函數,
,
在
上為單調遞增函數,
在
上恒成立,
成立,
得證.
科目:高中數學 來源: 題型:
【題目】下圖統計了截止到2019年年底中國電動汽車充電樁細分產品占比及保有量情況,關于這5次統計,下列說法正確的是( )
A.私人類電動汽車充電樁保有量增長率最高的年份是2018年
B.公共類電動汽車充電樁保有量的中位數是25.7萬臺
C.公共類電動汽車充電樁保有量的平均數為23.12萬臺
D.從2017年開始,我國私人類電動汽車充電樁占比均超過50%
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐VABCD中,底面ABCD是矩形,VD⊥平面ABCD,過AD的平面分別與VB,VC交于點M,N.
(1) 求證:BC⊥平面VCD;
(2) 求證:AD∥MN.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2019年上半年我國多個省市暴發了“非洲豬瘟”疫情,生豬大量病死,存欄量急劇下降,一時間豬肉價格暴漲,其他肉類價格也跟著大幅上揚,嚴重影響了居民的生活.為了解決這個問題,我國政府一方面鼓勵有條件的企業和散戶防控疫情,擴大生產;另一方面積極向多個國家開放豬肉進口,擴大肉源,確保市場供給穩定.某大型生豬生產企業分析當前市場形勢,決定響應政府號召,擴大生產決策層調閱了該企業過去生產相關數據,就“一天中一頭豬的平均成本與生豬存欄數量之間的關系”進行研究.現相關數據統計如下表:
生豬存欄數量 | 2 | 3 | 4 | 5 | 8 |
頭豬每天平均成本 | 3.2 | 2.4 | 2 | 1.9 | 1.5 |
(1)研究員甲根據以上數據認為與
具有線性回歸關系,請幫他求出
關于
的線.性回歸方程
(保留小數點后兩位有效數字)
(2)研究員乙根據以上數據得出與
的回歸模型:
.為了評價兩種模型的擬合效果,請完成以下任務:
①完成下表(計算結果精確到0.01元)(備注:稱為相應于點
的殘差);
生豬存欄數量 | 2 | 3 | 4 | 5 | 8 | |
頭豬每天平均成本 | 3.2 | 2.4 | 2 | 1.9 | 1.5 | |
模型甲 | 估計值 | |||||
殘差 | ||||||
模型乙 | 估計值 | 3.2 | 2.4 | 2 | 1.76 | 1.4 |
殘差 | 0 | 0 | 0 | 0.14 | 0.1 |
②分別計算模型甲與模型乙的殘差平方和及
,并通過比較
的大小,判斷哪個模型擬合效果更好.
(3)根據市場調查,生豬存欄數量達到1萬頭時,飼養一頭豬每一天的平均收入為7.5元;生豬存欄數量達到1.2萬頭時,飼養一頭豬每一天的平均收入為7.2元若按(2)中擬合效果較好的模型計算一天中一頭豬的平均成本,問該生豬存欄數量選擇1萬頭還是1.2萬頭能獲得更多利潤?請說明理由.(利潤=收入-成本)
參考公式:.
參考數據:.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓,右頂點為
,右焦點為
,
為坐標原點,
,橢圓
過點
.
(1)求橢圓的方程;
(2)若過點的直線
與橢圓
交于不同的兩點
(
在
之間),求
與
面積之比的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了調查中學生每天玩游戲的時間是否與性別有關,隨機抽取了男、女學生各50人進行調查,根據其日均玩游戲的時間繪制了如下的頻率分布直方圖.
(1)求所調查學生日均玩游戲時間在分鐘的人數;
(2)將日均玩游戲時間不低于60分鐘的學生稱為“游戲迷”,已知“游戲迷”中女生有6人;
①根據已知條件,完成下面的列聯表,并判斷能否在犯錯誤的概率不超過0.05的前提下認為“游戲迷”和性別關系;
非游戲迷 | 游戲迷 | 合計 | |
男 | |||
女 | |||
合計 |
②在所抽取的“游戲迷”中按照分層抽樣的方法抽取10人,再在這10人中任取9人進行心理干預,求這9人中男生全被抽中的概率.
附:(其中
為樣本容量).
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數(其中
是常數,且
),曲線
在
處的切線方程為
.
(1)求的值;
(2)若存在(其中
是自然對數的底),使得
成立,求
的取值范圍;
(3)設,若對任意
,均存在
,使得方程
有三個不同的實數解,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】獨立性檢驗中,假設:運動員受傷與不做熱身運動沒有關系.在上述假設成立的情況下,計算得
的觀測值
.下列結論正確的是( )
附:
0.10 | 0.05 | 0.010 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
A. 在犯錯誤的概率不超過0.01的前提下,認為運動員受傷與不做熱身運動有關
B. 在犯錯誤的概率不超過0.01的前提下,認為運動員受傷與不做熱身運動無關
C. 在犯錯誤的概率不超過0.005的前提下,認為運動員受傷與不做熱身運動有關
D. 在犯錯誤的概率不超過0.005的前提下,認為運動員受傷與不做熱身運動無關
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com