【題目】已知數列 滿足
,
,求證:
(I) ;
(II) ;
(III) .
【答案】解:(I)(數學歸納法)
當 時,因為
,所以
成立.
假設當 時,
成立,
則當 時,
.
因為 ,
且 得
所以 也成立.
(II)因為 ,
所以
所以 .
(III)因為 ,所以
.
從而 .
所以 ,即
.
所以 .
又 ,故
.
【解析】此題主要考查歸納法的證明,歸納法一般三個步驟:(1)驗證n=1成立;(2)假設n=k成立;(3)利用已知條件證明n=k+1也成立,從而求證,這是數列的通項一種常用求解的方法.
【考點精析】解答此題的關鍵在于理解數學歸納法的作用的相關知識,掌握用數學歸納法可以證明許多與自然數有關的數學命題,其中包括恒等式、不等式、數列通項公式、幾何中的計算問題等,以及對數學歸納法的步驟的理解,了解
.
科目:高中數學 來源: 題型:
【題目】已知函數 ,其中
為自然對數的底數.
(1)若函數 在區間
上是單調函數,試求實數
的取值范圍;
(2)已知函數 ,且
,若函數
在區間
上恰有3個零點,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我們可以用隨機模擬的方法估計 的值,如圖程序框圖表示其基本步驟(函數
是產生隨機數的函數,它能隨機產生
內的任何一個實數).若輸出的結果為
,則由此可估計
的近似值為( )
A.3.119
B.3.124
C.3.132
D.3.151
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系 中,曲線
的參數方程為
(
為參數),在以
為極點,
軸的正半軸為極軸的極坐標系中,曲線
是圓心為
,半徑為1的圓.
(1)求曲線 ,
的直角坐標方程;
(2)設 為曲線
上的點,
為曲線
上的點,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在一個坡度一定的山坡AC的頂上有一高度為25m的建筑物CD,為了測量該山坡相對于水平地面的坡角θ,在山坡的A處測得∠DAC=15°,沿山坡前進50m到達B處,又測得∠DBC=45°,根據以上數據可得cosθ= .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在矩形 中,點
在線段
上,
,
,沿直線
將
翻折成
,使點
在平面
上的射影
落在直線
上.
(Ⅰ)求證:直線 平面
;
(Ⅱ)求二面角 的平面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】網店和實體店各有利弊,兩者的結合將在未來一段時期內,成為商業的一個主要發展方向.某品牌行車記錄儀支架銷售公司從 年
月起開展網絡銷售與實體店體驗安裝結合的銷售模式.根據幾個月運營發現,產品的月銷量
萬件與投入實體店體驗安裝的費用
萬元之間滿足
函數關系式.已知網店每月固定的各種費用支出為
萬元,產品每
萬件進貨價格為
萬元,若每件產品的售價定為“進貨價的
”與“平均每件產品的實體店體驗安裝費用的一半”之和,則該公司最大月利潤是萬元.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓 的左、右焦點分別為
短軸兩個端點為
且四邊形
是邊長為
的正方形.
(Ⅰ)求橢圓的方程;
(Ⅱ)若 分別是橢圓長軸的左、右端點,動點
滿足
,連接
,交橢圓于點
.證明:
為定值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com