【題目】用秦九韶算法求多項式f(x)=7x7+6x6+5x5+4x4+3x3+2x2+x,當x=3時的值,并將結果化為8進制數.
【答案】解:f(x)=7x7+6x6+5x5+4x4+3x3+2x2+x=((((((7x+6)x+5)x+4)x+3)x+2)x+1)x,
當x=3時的值,可得
v0=7,
v1=7×3+6=27,
v2=27×3+5=86,
v3=86×3+4=262,
v4=262×3+3=789,
v5=789×3+2=2369,
v6=2369×3+1=7108,
v7=7108×3=21324.
如圖所示,
21324化為8進制數為51514(8) .
【解析】利用f(x)=((((((7x+6)x+5)x+4)x+3)x+2)x+1)x,可得f(3)=21324,再利用進位制的換算方法即可得出.
【考點精析】關于本題考查的秦九韶算法,需要了解求多項式的值時,首先計算最內層括號內依次多項式的值,即v1=anx+an-1然后由內向外逐層計算一次多項式的值,把n次多項式的求值問題轉化成求n個一次多項式的值的問題才能得出正確答案.
科目:高中數學 來源: 題型:
【題目】某公司為了準確地把握市場,做好產品生產計劃,對過去四年的數據進行整理得到了第年與年銷量
(單位:萬件)之間的關系如表:
1 | 2 | 3 | 4 | |
12 | 28 | 42 | 56 |
(Ⅰ)在圖中畫出表中數據的散點圖;
(Ⅱ)根據(Ⅰ)中的散點圖擬合與
的回歸模型,并用相關系數甲乙說明;
(Ⅲ)建立關于
的回歸方程,預測第5年的銷售量約為多少?.
附注:參考數據: ,
,
.
參考公式:相關系數,
回歸方程中斜率和截距的最小二乘法估計公式分別為:
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校為了了解高二年級學生對教師教學的意見,打算從高二年級883名學生中抽取80名進行座談,若采用下面的方法選。合扔煤唵坞S機抽樣從883人中剔除3人,剩下880人再按系統抽樣的方法進行,則每人入選的概率是( )
A.
B.
C.
D.無法確定
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設f(k)是滿足不等式log2x+log2(52k﹣1﹣x)≥2k(k∈N*)的自然數x的個數.
(1)求f(k)的函數解析式;
(2)Sn=f(1)+2f(2)+…+nf(n),求Sn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,內角A,B,C所對的邊分別為a,b,c,且a+b+c=16.
(1)若a=4,b=5,求cosC的值;
(2)若sinA+sinB=3sinC,且△ABC的面積S=18sinC,求a和b的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數,關于實數
的不等式
的解集為
.
(1)當時,解關于
的不等式:
;
(2)是否存在實數,使得關于
的函數
(
)的最小值為
?若存在,求實數
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】根據下面的要求,求滿足1+2+3+…+n>500的最小的自然數n.
(1)畫出執行該問題的程序框圖;
(2)以下是解決該問題的一個程序,但有2處錯誤,請找出錯誤并予以更正.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= sin
cos
﹣
sin2
.
(1)求f(x)的最小正周期及f(x)的單調遞減區間;
(2)求f(x)在區間[﹣π,0]上的最值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com