【題目】在△ABC中,a,b,c分別為角A,B,C所對的邊.已知sinC= sinB,c=2,cosA=
.
(Ⅰ)求a的值;
(Ⅱ)求sin(2A﹣ )的值.
【答案】解:(Ⅰ)∵△ABC中,a,b,c分別為角A,B,C所對的邊.
sinC= sinB,∴由正弦定理可得c=
.
∵c=2,∴b=3,再根據cosA= =
=
,∴a=
.
(Ⅱ)∵cosA= ,∴sinA=
=
,∴sin2A=2sinAcosA=
,
cos2A=2cos2A﹣1= ,
∴sin(2A﹣ )=sin2Acos
﹣cos2Asin
=
﹣
=
【解析】(1)根據正弦定理和已知條件不難得到,c與b的大小關系,求出c的值,再根據余弦定理可得a的值,(2)由同角三角函數值的關系求得sinA,從而得到sin2A,cos2A,再由兩角差的正弦公式可得結果.
【考點精析】通過靈活運用兩角和與差的正弦公式,掌握兩角和與差的正弦公式:即可以解答此題.
科目:高中數學 來源: 題型:
【題目】函數f(x)=sin(ωx+φ)(ω>0,|φ|< )的部分圖象如圖所示,將y=f(x)的圖象向右平移
個單位長度后得到函數y=g(x)的圖象.
(1)求函數y=g(x)的解析式;
(2)在△ABC中,角A,B,C滿足2sin2 =g(C+
)+1,且其外接圓的半徑R=2,求△ABC的面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設A、B、C為銳角△ABC的三個內角,M=sinA+sinB+sinC,N=cosA+2cosB,則( )
A.M<N
B.M=N
C.M>N
D.M、N大小不確定
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)=Asin(ωx+φ),x∈R,(ω>0,﹣ <φ<
)的部分圖象如圖所示.
(Ⅰ)確定A,ω,φ的值,并寫出函數f(x)的解析式;
(Ⅱ)描述函數y=f(x)的圖象可由函數y=sinx的圖象經過怎樣的變換而得到;
(Ⅲ)若f( )=
(
<α<
),求tan2(α﹣
).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在D上的函數f(x),如果滿足:對任意x∈D,存在常數M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數,其中M稱為函數f(x)的上界.已知函數 .
(1)若f(x)是奇函數,求m的值;
(2)當m=1時,求函數f(x)在(﹣∞,0)上的值域,并判斷函數f(x)在(﹣∞,0)上是否為有界函數,請說明理由;
(3)若函數f(x)在[0,1]上是以3為上界的函數,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某大學餐飲中心為了了解新生的飲食習慣,在全校一年級學生中進行了抽樣調查,調查結果如下表所示:
喜歡甜品 | 不喜歡甜品 | 合計 | |
南方學生 | 60 | 20 | 80 |
北方學生 | 10 | 10 | 20 |
合計 | 70 | 30 | 100 |
(1)根據表中數據,問是否有95%的把握認為“南方學生和北方學生在選用甜品的飲食習慣方面有差異”;
(2)已知在被調查的北方學生中有5名數學系的學生,其中2名喜歡甜品,現在從這5名學生中隨機抽取3人,求至多有1人喜歡甜品的概率. 附:K2=
P(K2>k0) | 0.10 | 0.05 |
| 0.005 |
k0 | 2.706 | 3.841 |
| 7.879 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在長方體ABCD﹣A1B1C1D1中,AA1=2AB=2BC,E,F,E1分別是棱AA1 , BB1 , A1B1的中點.
(1)求證:CE∥平面C1E1F;
(2)求證:平面C1E1F⊥平面CEF.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知命題“非空集合 中的元素都是集合
中的元素”是假命題,
那么下列命題中真命題的個數為( )
① 中的元素都不是
中的元素 ②
中有不屬于
的元素
③ 中有屬于
的元素 ④
中的元素不都是
中的元素
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com