【題目】在平面直角坐標系中,曲線C的參數方程為:
(
為參數).在以坐標原點為極點,x軸正半軸為極軸的極坐標系中,直線l的極坐標方程為
.
(Ⅰ)求曲線C的普通方程和直線l的直角坐標方程;
(Ⅱ)設點P的直角坐標為,若直線l與曲線C分別相交于A,B兩點,求
的值.
科目:高中數學 來源: 題型:
【題目】如圖,三棱柱中,
平面
,
,
.以
,
為鄰邊作平行四邊形
,連接
和
.
(1)求證:平面
;
(2)若二面角為45°,
①證明:平面平面
;
②求直線與平面
所成角的正切值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線,過
的直線
與拋物線C交于
兩點,點A在第一象限,拋物線C在
兩點處的切線相互垂直.
(1)求拋物線C的標準方程;
(2)若點P為拋物線C上異于的點,直線
均不與
軸平行,且直線AP和BP交拋物線C的準線分別于
兩點,
.
(i)求直線的斜率;
(ⅱ)求的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】小芳、小明兩人各拿兩顆質地均勻的骰子做游戲,規則如下:若擲出的點數之和為4的倍數,則由原投擲人繼續投擲;若擲出的點數之和不是4的倍數,則由對方接著投擲.
(1)規定第1次從小明開始.
(。┣笄4次投擲中小明恰好投擲2次的概率;
(ⅱ)設游戲的前4次中,小芳投擲的次數為,求隨機變量
的分布列與期望.
(2)若第1次從小芳開始,求第次由小芳投擲的概率
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中醫藥研究所研制出一種新型抗癌藥物,服用后需要檢驗血液是否為陽性,現有份血液樣本每個樣本取到的可能性均等,有以下兩種檢驗方式:(1)逐份檢驗,則需要檢驗
次;(2)混合檢驗,將其中
份血液樣本分別取樣混合在一起檢驗,若結果為陰性,則這
份的血液全為陰性,因而這
份血液樣本只需檢驗一次就夠了;若檢驗結果為陽性,為了明確這
份血液究竟哪份為陽性,就需要對這
份再逐份檢驗,此時這
份血液的檢驗次數總共為
次假設在接受檢驗的血液樣本中,每份樣本的檢驗結果總陽性還是陰性都是相互獨立的,且每份樣本是陽性的概率為
.
(1)假設有6份血液樣本,其中只有兩份樣本為陽性,若采取遂份檢驗的方式,求恰好經過兩次檢驗就能把陽性樣本全部檢驗出來的概率.
(2)現取其中的份血液樣本,記采用逐份檢驗的方式,樣本需要檢驗的次數為
;采用混合檢驗的方式,樣本簡要檢驗的總次數為
;
(。┤,試運用概率與統計的知識,求
關于
的函數關系
,
(ⅱ)若,采用混合檢驗的方式需要檢驗的總次數的期望比逐份檢驗的總次數的期望少,求
的最大值(
,
,
,
,
,
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】這三個條件中任選一個,補充在下面問題中,并給出解答.
設等差數列的前
項和為
,數列
的前
項和為
,________,
,若對于任意
都有
,且
(
為常數),求正整數
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線
的參數方程為
(其中
為參數),曲線
的參數方程為
(其中
為參數),以原點
為極點,
軸的正半軸為極軸建立極坐標系.
(1)求曲線、
的極坐標方程;
(2)射線:
與曲線
,
分別交于點
,
(且點
,
均異于原點
),當
時,求
的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com