精英家教網 > 高中數學 > 題目詳情

【題目】如圖,已知正方體的棱長為2,則以下四個命題中錯誤的是

A. 直線為異面直線 B. 平面

C. D. 三棱錐的體積為

【答案】D

【解析】分析:在A中,由異面直線判定定理得直線A1C1與AD1為異面直線;在B中,由A1C1AC,得A1C1平面ACD1;在C中,由AC⊥BD,AC⊥DD1,得AC面BDD1,從而BD1AC;在D中,三棱錐D1﹣ADC的體積為

詳解:由正方體ABCD﹣A1B1C1D1的棱長為2,知:

在A中,直線A1C1平面A1B1C1D1,BD1平面A1B1C1D1

D1直線A1C1,由異面直線判定定理得直線A1C1與AD1為異面直線,故A正確;

在B中,∵A1C1∥AC,A1C1平面ACD1,AC平面ACD1,

∴A1C1平面ACD1,故B正確;

在C中,正方體ABCD﹣A1B1C1D1中,AC⊥BD,AC⊥DD1,

∵BD∩DD1,∴AC⊥面BDD1,∴BD1AC,故C正確;

在D中,三棱錐D1﹣ADC的體積:

==,故D錯誤.

故選:D.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在對樹人中學高一年級學生身高的調查中,采用樣本量比例分配的分層隨機抽樣,如果不知道樣本數據,只知道抽取了男生23人,其平均數和方差分別為170.612.59,抽取了女生27人,其平均數和方差分別為160.638.62.你能由這些數據計算出總樣本的方差,并對高一年級全體學生的身高方差作出估計嗎?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】拋擲一顆質地均勻的骰子,有如下隨機事件:=“點數為i”,其中;=“點數不大于2”,=“點數大于2”,=“點數大于4”;E=“點數為奇數”,F=“點數為偶數”.判斷下列結論是否正確.

1互斥;(2為對立事件;(3;(4;(5,

6;(7;(8E,F為對立事件;(9;(10

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)若函數在點處切線的斜率為4,求實數的值;

(2)求函數的單調區間;

(3)若函數上是減函數,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-5:不等式選講

已知函數,.

(1)當時,解關于的不等式

(2)若對任意,都存在,使得不等式成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在四棱錐中,.

(1)設相交于點,,且平面,求實數的值;

(2)若,且,求二面角 的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某課程考核分理論與實驗兩部分進行,每部分考核成績只記“合格”與“不合格”,兩部分考核都是“合格”,則該課程考核“合格”,若甲、乙、丙三人在理論考核中合格的概率分別為0.9,0.8,0.7,在實驗考核中合格的概率分別為0.8,0.7,0.9,所有考核是否合格相互之間沒有影響.

(1)求甲、乙、丙三人在理論考核中至少有兩人合格的概率;

(2)求這三個人該課程考核都合格的概率(結果保留三位小數).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

1)求的定義域;

2)判斷的奇偶性;

3)求使x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某村莊擬修建一個無蓋的圓柱形蓄水池(不計厚度).設該蓄水池的底面半徑為r米,高為h米,體積為V立方米.假設建造成本僅與表面積有關,側面積的建造成本為100/平方米,底面的建造成本為160/平方米,該蓄水池的總建造成本為12000π元(π為圓周率).

1)將V表示成r的函數Vr),并求該函數的定義域;

2)討論函數Vr)的單調性,并確定rh為何值時該蓄水池的體積最大.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视