【題目】設有關于x 的一元二次方程
(1)若是從0,1,2,3,4五個數中任取的一個數,
是從0,1,2,3四個數中任取的一個數,求上述方程有實數根的概率;
(2)若是從區間
中任取的一個實數,
是從區間
中任取的一個實數,求上述方程有實數根的概率.
科目:高中數學 來源: 題型:
【題目】已知關于x的函數,其導函數
.
(1)如果函數在x=1處有極值
試確定b、c的值;
(2)設當時,函數
圖象上任一點P處的切線斜率為k,若
,求實數b的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,以原點O為極點,x軸正半軸為極軸建立極坐標系.若曲線C的極坐標方程為ρcos2θ﹣4sinθ=0,P點的極坐標為 ,在平面直角坐標系中,直線l經過點P,斜率為
(Ⅰ)寫出曲線C的直角坐標方程和直線l的參數方程;
(Ⅱ)設直線l與曲線C相交于A,B兩點,求 的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,多面體EF﹣ABCD中,ABCD是正方形,AC、BD相交于O,EF∥AC,點E在AC上的射影恰好是線段AO的中點.
(Ⅰ)求證:BD⊥平面ACF;
(Ⅱ)若直線AE與平面ABCD所成的角為60°,求平面DEF與平面ABCD所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D為線段AC的中點,E為線段PC上一點.
(1)求證:PA⊥BD;
(2)求證:平面BDE⊥平面PAC;
(3)當PA∥平面BDE時,求三棱錐E-BCD的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖下圖①,等邊三角形ABC的邊長為2a,CD是AB邊上的高,E,F分別是AC和BC邊上的點,且滿足=k,現將△ABC沿CD翻折成直二面角ADCB,如圖下圖②.
(1)試判斷翻折后直線AB與平面DEF的位置關系,并說明理由;
(2)求二面角BACD的正切值.
① ②
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐PABCD中,AD⊥平面PDC,AD∥BC,PD⊥PB,AD=1,BC=3,CD=4,PD=2.
(1)求異面直線AP與BC所成角的余弦值;
(2)求證:PD⊥平面PBC;
(3)求直線AB與平面PBC所成角的正弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com