【題目】如圖,在四棱錐中,
面ABCD,
,
,E,F分別為線段AD,PA的中點.
求證:平面
平面BEF;
求證:
平面PAC.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= (a>0,且a≠1)在R上單調遞減,且關于x的方程|f(x)|=2﹣x恰好有兩個不相等的實數解,則a的取值范圍是( )
A.(0, ]
B.[ ,
]
C.[ ,
]∪{
}
D.[ ,
)∪{
}
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C1: +
=1,圓C2:x2+y2=t經過橢圓C1的焦點.
(1)設P為橢圓上任意一點,過點P作圓C2的切線,切點為Q,求△POQ面積的取值范圍,其中O為坐標原點;
(2)過點M(﹣1,0)的直線l與曲線C1 , C2自上而下依次交于點A,B,C,D,若|AB|=|CD|,求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分)已知等差數列{an}的前n項和為Sn,且a3=5,S15="225."
(1)求數列{an}的通項an;
(2)設bn=+2n,求數列{bn}的前n項和Tn.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如果函數在其定義域內存在
,使得
成立,則稱函數
為“可分拆函數”.
(1)試判斷函數是否為“可分拆函數”?并說明你的理由;
(2)設函數為“可分拆函數”,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點P與兩個定點O(0,0),A(-3,0)距離之比為.
(1)求點P的軌跡C方程;
(2)求過點M(2,3)且被軌跡C截得的線段長為2的直線方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某知名品牌汽車深受消費者喜愛,但價格昂貴.某汽車經銷商推出A、B、C三種分期付款方式銷售該品牌汽車,并對近期100位采用上述分期付款的客戶進行統計分析,得到如下的柱狀圖.已知從A、B、C三種分期付款銷售中,該經銷商每銷售此品牌汽車1倆所獲得的利潤分別是1萬元,2萬元,3萬元.現甲乙兩人從該汽車經銷商處,采用上述分期付款方式各購買此品牌汽車一輛.以這100位客戶所采用的分期付款方式的頻率代替1位客戶采用相應分期付款方式的概率.
(1)求甲乙兩人采用不同分期付款方式的概率;
(2)記X(單位:萬元)為該汽車經銷商從甲乙兩人購車中所獲得的利潤,求X的分布列與期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com