精英家教網 > 高中數學 > 題目詳情

【題目】設奇函數f(x)在(0,+∞)上為增函數,且f(1)=0,則不等式x[(f(x)﹣f(﹣x)]<0的解集為

【答案】(﹣1,0)∪(0,1)
【解析】解:若奇函數f(x)在(0,+∞)上為增函數,

則函數f(x)在(﹣∞,0)上也為增函數,

又∵f(1)=0

∴f(﹣1)=0

則當x∈(﹣∞,﹣1)∪(0,1)上時,f(x)<0,f(x)﹣f(﹣x)<0

當x∈(﹣1,0)∪(1,+∞)上時,f(x)>0,f(x)﹣f(﹣x)>0

則不等式x[(f(x)﹣f(﹣x)]<0的解集為(﹣1,0)∪(0,1)

所以答案是:(﹣1,0)∪(0,1)

【考點精析】通過靈活運用奇偶性與單調性的綜合,掌握奇函數在關于原點對稱的區間上有相同的單調性;偶函數在關于原點對稱的區間上有相反的單調性即可以解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知橢圓C1 =1(a>b>0)與雙曲線C2:x2 =1有公共的焦點,C2的一條漸近線與以C1的長軸為直徑的圓相交于A,B兩點.若C1恰好將線段AB三等分,則(
A.a2=
B.a2=3
C.b2=
D.b2=2

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】點P是拋物線y2=4x上一動點,則點P到點A(0,﹣1)的距離與到直線x=﹣1的距離和的最小值是(
A.
B.
C.2
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在△ABC中,∠B=45°, , ,點D是AB的中點,求:
(1)邊AB的長;
(2)cosA的值和中線CD的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設關于x,y的不等式組 表示的平面區域內存在點P(x0 , y0),滿足x0﹣2y0=2,求得m的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設集合A={x|x2<9},B={x|(x﹣2)(x+4)<0}.
(1)求集合A∩B;
(2)若不等式2x2+ax+b<0的解集為A∪B,求a、b的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若函數f(x)滿足下列條件:在定義域內存在x0 , 使得f(x0+1)=f(x0)+f(1)成立,則稱函數f(x)具有性質M;反之,若x0不存在,則稱函數f(x)不具有性質M.
(1)證明:函數f(x)=2x具有性質M,并求出對應的x0的值;
(2)已知函數 具有性質M,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校為了解全校高中學生五一小長假參加實踐活動的情況,抽查了100名學生,統計他們假期參加實踐活動的時間,繪成的頻率分布直方圖如圖所示.

(1)求這100名學生中參加實踐活動時間在6~10小時內的人數;
(2)估計這100名學生參加實踐活動時間的眾數、中位數和平均數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知矩形ABCD(AB>AD)的周長為12,若將它關于對角線AC折起后,使邊AB與CD交于點P(如圖所示),則△ADP面積的最大值為

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视