精英家教網 > 高中數學 > 題目詳情

【題目】下列命題中錯誤的是( )

A. 如果平面外的直線不平行于平面,則平面內不存在與平行的直線

B. 如果平面平面,平面平面, ,那么直線平面

C. 如果平面平面,那么平面內所有直線都垂直于平面

D. 一條直線與兩個平行平面中的一個平面相交,則必與另一個平面相交

【答案】C

【解析】平面外的直線平面內一直線,則平面,所以A正確;

平面內作兩條相交直線分別垂直平面平面交線及平面平面交線,則由平面平面,平面平面,得分別垂直平面平面,即都垂直于直線,因此直線平面,即B正確;C錯誤,顯然平面平面的交線不垂直于平面;當一條直線與兩個平行平面中的一個平面相交時,若此直線在另一個平面內,則與原平面無交點,矛盾;此直線與另一個平面平行,則可得此直線與原平面平行或在原平面內,矛盾,因此此直線必與另一個平面相交;綜上選C.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某地政府鑒于某種日常食品價格增長過快,欲將這種食品價格控制在適當范圍內,決定對這種食品生產廠家提供政府補貼,設這種食品的市場價格為x元/千克,政府補貼為t元/千克,根據市場調查,當16≤x≤24時,這種食品市場日供應量p萬千克與市場日需求量q萬千克近似地滿足關系:p=2(x+4t-14)(x≥16,t≥0),q=24+8ln (16≤x≤24).當p=q時的市場價格稱為市場平衡價格.

(1)將政府補貼表示為市場平衡價格的函數,并求出函數的值域.

(2)為使市場平衡價格不高于每千克20元,政府補貼至少為每千克多少元?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(本小題滿分14分)

如圖,四邊形是正方形,均是以為直角頂點的等腰直角三角形,點的中點,點是邊上的任意一點.

1)求證: ;

2)求二面角的平面角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(不等式選講)

已知函數

(1)若,解不等式;

(2)若不等式在R上恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,ABCDA1B1C1D1是正方體,畫出圖中陰影部分的平面與平面ABCD的交線,并給出證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓 )的離心率為,直線 與以原點為圓心、橢圓的短半軸長為半徑的圓相切.

(1)求橢圓的方程;

(2)過橢圓的左頂點作直線,與圓相交于兩點 ,若是鈍角三角形,求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,在正方體ABCDA1B1C1D1中,E,F分別為B1C1A1D1的中點.求證:平面ABB1A1與平面CDFE相交.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校100名學生期中考試數學成績的頻率分布直方圖如圖,其中成績分組區間如下:

組號

第一組

第二組

第三組

第四組

第五組

分組

[5060

[60,70

[70,80

[80,90

[90,100]

1)求圖中a的值;

2)根據頻率分布直方圖,估計這100名學生期中考試數學成績的平均分;

3)現用分層抽樣的方法從第3、45組中隨機抽取6名學生,將該樣本看成一個總體,從中隨機抽取2名,求其中恰有1人的分數不低于90分的概率?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知e為自然對數的底數,設函數,則( ).

A. k=1時,f(x)在x=1處取到極小值 B. k=1時,f(x)在x=1處取到極大值

C. k=2時,f(x)在x=1處取到極小值 D. k=2時,f(x)在x=1處取到極大值

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视