【題目】已知函數f(x)= .
(1)判斷函數f(x)在區間[1,+∞)上的單調性,并用定義證明你的結論;
(2)求函數f(x)在區間[2,4]上的最大值與最小值.
【答案】
(1)解:函數f(x)在[1,+∞)上是增函數;
證明:任取x1,x2∈[1,+∞),且x1<x2,
∵x1﹣x2<0,(x1+1)(x2+1)>0,所以,f(x1)﹣f(x2)<0,即f(x1)<f(x2),
所以函數f(x)在[1,+∞)上是增函數
(2)解:由(1)知,f(x)在[2,4]上是增函數.
所以最大值為 ,
最小值為
【解析】(1)利用函數的大小定義進行證明即可;(2)根據(1)的結論,利用單調性得到最值.
【考點精析】通過靈活運用函數單調性的判斷方法和函數的最值及其幾何意義,掌握單調性的判定法:①設x1,x2是所研究區間內任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大。虎圩鞑畋容^或作商比較;利用二次函數的性質(配方法)求函數的最大(。┲;利用圖象求函數的最大(。┲担焕煤瘮祮握{性的判斷函數的最大(。┲导纯梢越獯鸫祟}.
科目:高中數學 來源: 題型:
【題目】將圓為參數)上的每一點的橫坐標保持不變,縱坐標變為原來的
倍,得到曲線
(1)求出的普通方程;
(2)設直線:
與
的交點為
,
,以坐標原點為極點,
軸正半軸為極軸建立極坐標系,求過線段
的中點且與
垂直的直線的極坐標方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】奇函數f(x)、偶函數g(x)的圖象分別如圖1、2所示,方程f(g(x))=0、g(f(x))=0的實根個數分別為a、b,則a+b=( )
A.14
B.10
C.7
D.3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】四名同學根據各自的樣本數據研究變量之間的相關關系,并求得回歸直線方程,分別得到以下四個結論:( )
①與
負相關且
. ②
與
負相關且
③與
正相關且
④
與
正相關且
其中正確的結論的序號是( )
A. ①② B. ②③ C. ①④ D. ③④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法:
①將一組數據中的每個數據都加上或減去同一個常數后,方差恒不變;
②設有一個回歸方程,變量
增加一個單位時,
平均增加
個單位;
③老師在某班學號為1~50的50名學生中依次抽取學號為5,10,15,20,25,30,35,40,45,50的學生進行作業檢查,這種抽樣方法是系統抽樣;
其中正確的個數是( )
A. B. 2 C.
D. 0
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本題滿分12分)為選拔選手參加“中國漢字聽寫大會”,某中學舉行了一次“漢字聽寫大賽”活動.為了了解本次競賽學生的成績情況,從中抽取了部分學生的分數(得分取正整數,滿分為100分)作為樣本(樣本容量為)進行統計.按照
,
,
,
,
的分組作出頻率分布直方圖,并作出樣本分數的莖葉圖(圖中僅列出了得分在
,
的數據).
(1)求樣本容量和頻率分布直方圖中的
、
的值;
(2)在選取的樣本中,從競賽成績在80分以上(含80分)的學生中隨機抽取2名學生參加“中國漢字聽寫大會”,求所抽取的2名學生中至少有一人得分在內的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知集合A={x|a﹣1≤x≤2a+3},B={x|﹣2≤x≤4},全集U=R
(1)當a=2時,求A∪B和(RA)∩B;
(2)若A∩B=A,求實數a的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com