(本題滿分9分)已知頂點在原點,焦點在軸上的拋物線過點
.
(1)求拋物線的標準方程;
(2)過點作直線交拋物線于
兩點,使得
恰好平分線段
,求直線
的方程
科目:高中數學 來源: 題型:解答題
(本題12分)
已知橢圓的右焦點為F,上頂點為A,P為C
上任一點,MN是圓
的一條直徑,若與AF平行且在y軸上的截距為
的直線
恰好與圓
相切.
(Ⅰ)求橢圓的離心率;
(Ⅱ)若的最大值為49,求橢圓C
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分12分)
已知橢圓C:的上頂點坐標為
,離心率為
.
(Ⅰ)求橢圓方程;
(Ⅱ)設P為橢圓上一點,A為左頂點,F為橢圓的右焦點,求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)雙曲線C與橢圓有相同的焦點,直線y=
為
的一條漸近線.
(Ⅰ)求雙曲線的方程;
(Ⅱ)過點(0,4)的直線
,交雙曲線
于A,B兩點,交x軸于
點(
點與
的頂點不重合)。當
=
,且
時,求
點的坐標
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(12分)已知拋物線的焦點為
,準線為
,過
上一點P作拋物線的兩切線,切點分別為A、B,
(1)求證:;
(2)求證:A、F、B三點共線;
(3)求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓中心在原點,焦點在軸上,橢圓短軸的端點和焦點組成的四邊形為正方形,且
.
(1)求橢圓方程;
(2)直線過點
,且與橢圓相交于
、
不同的兩點,當
面積取得最大值時,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分10分)已知中心在原點O,焦點在軸上的橢圓C的離心率為
,點A,B分別是橢圓C的長軸、短軸的端點,點O到直線AB的距離為
。
(1)求橢圓C的標準方程;
(2)已知點E(3,0),設點P、Q是橢圓C上的兩個動點,滿足EP⊥EQ,
求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知為雙曲線
的左、右焦點.
(Ⅰ)若點為雙曲線與圓
的一個交點,且滿足
,求此雙曲線的離心率;
(Ⅱ)設雙曲線的漸近線方程為,
到漸近線的距離是
,過
的直線交雙曲線于A,B兩點,且以AB為直徑的圓與
軸相切,求線段AB的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com