精英家教網 > 高中數學 > 題目詳情

【題目】在數列中,若p為常數),則稱等方差數列”.下列是對等方差數列的判斷,正確的是(

A.不是等方差數列;

B.既是等方差數列,又是等差數列,則該數列為常數列;

C.已知數列是等方差數列,則數列是等方差數列;

D.是等方差數列,則(,k為常數)也是等方差數列.

【答案】B

【解析】

根據新數列的定義,對每項進行逐一推證即可.

A,故數列是等方差數列,故A錯誤;

B既是等方差數列,則,即

是等差數列,則,(為常數)

,顯然該數列為常數列,

,則可得,故可解得

此時該數列也為常數列;

綜上所述,若既是等方差數列,又是等差數列,則該數列為常數列

B正確;

C:數列是等方差數列,則

不一定是常數,數列不一定是等方差數列,

C錯誤;

D是等方差數列,則,不能夠說明為常數,

D不正確;

故選:B.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,側面底面ABCD,側棱,底面ABCD為直角梯形,其中,,,OAD中點.

1)求異面直線PBCD所成角的余弦值;

2)線段AD上是否存在點Q,使得它到平面PCD的距離為?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓經過點, ,且圓心在直線.

(1)求圓的方程;

(2)過點的直線與圓交于兩點,問在直線上是否存在定點,使得恒成立?若存在,請求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,圓的方程為,若直線上至少存在一點,使得以該點為圓心,1為半徑的圓與圓有公共點,則的最大值為__________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如果函數的定義域為,對于定義域內的任意存在實數使得成立,則稱此函數具有“性質”.

1)判斷函數是否具有“性質”,若具有“性質”,寫出所有的值;若不具有“性質”,請說明理由.

2)設函數具有“性質”,且當時,,求當時函數的解析式;若交點個數為1001個,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在多面體ABCPE中,平面PAC⊥平面ABC,ACBC,PEBC,2PEBC,M是線段AE的中點,N是線段PA上一點,且滿足ANAP(0<<1).

(Ⅰ)若,求證:MNPC;

(Ⅱ)是否存在,使得三棱錐MACN與三棱錐BACP的體積比為1:12?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對于函數,記集合;

(1)設,,求.

(2)設,,若,求實數a的取值范圍.

(3)設.如果求實數b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知某手機品牌公司的年固定成本為40萬元,每生產1萬部手機還需要另投入16萬元,設該公句一年內生產x萬部并全部銷售完,每1萬部手機的銷售收入為萬元,且

1)寫出年利潤(萬元)關于年產量(萬部)的函數解析式;

2)當年產量多少萬部時,公司在該款手機生產獲得最大利潤,并求出最大利潤.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,圓O:與坐標軸分別交于A1,A2,B1,B2(如圖).

(1)點Q是圓O上除A1,A2外的任意點(如圖1),直線A1Q,A2Q與直線交于不同的兩點M,N,求線段MN長的最小值;

(2)點P是圓O上除A1,A2,B1,B2外的任意點(如圖2),直線B2Px軸于點F,直線A1B2A2P于點E.設A2P的斜率為k,EF的斜率為m,求證:2mk為定值.

(圖1) (圖2)

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视