【題目】設函數f(x)=lnx﹣ax+ ﹣1. (Ⅰ)當a=1時,求曲線f(x)在x=1處的切線方程;
(Ⅱ)當a= 時,求函數f(x)的單調區間;
(Ⅲ)在(Ⅱ)的條件下,設函數g(x)=x2﹣2bx﹣ ,若對于x1∈[1,2],x2∈[0,1],使f(x1)≥g(x2)成立,求實數b的取值范圍.
【答案】解:函數f(x)的定義域為(0,+∞),
(Ⅰ)當a=1時,f(x)=lnx﹣x﹣1,∴f(1)=﹣2, ,
∴f′(1)=0,∴f(x)在x=1處的切線方程為y=﹣2
(Ⅱ) =
令f′(x)<0,可得0<x<1,或x>2;令f'(x)>0,可得1<x<2
故當 時,函數f(x)的單調遞增區間為(1,2);單調遞減區間為(0,1),(2,+∞).
(Ⅲ)當 時,由(Ⅱ)可知函數f(x)在(1,2)上為增函數,
∴函數f(x)在[1,2]上的最小值為f(1)=
若對于x1∈[1,2],x2∈[0,1]使f(x1)≥g(x2)成立,等價于g(x)在[0,1]上的最小值不大于f(x)在(0,e]上的最小值 (*)
又 ,x∈[0,1]
①當b<0時,g(x)在[0,1]上為增函數, 與(*)矛盾
②當0≤b≤1時, ,由
及0≤b≤1得,
③當b>1時,g(x)在[0,1]上為減函數, ,
此時b>1
綜上,b的取值范圍是
【解析】確定函數f(x)的定義域,并求導函數(Ⅰ)當a=1時,f(x)=lnx﹣x﹣1,求出f(1)=﹣2,f′(1)=0,即可得到f(x)在x=1處的切線方程;(Ⅱ)求導函數,令f'(x)<0,可得函數f(x)的單調遞減區間;令f'(x)>0,可得函數f(x)的單調遞增區間;(Ⅲ)當 時,求得函數f(x)在[1,2]上的最小值為f(1)=
;對于x1∈[1,2],x2∈[0,1]使f(x1)≥g(x2)成立,等價于g(x)在[0,1]上的最小值不大于f(x)在(0,e]上的最小值,求出
,x∈[0,1]的最小值,即可求得b的取值范圍.
【考點精析】本題主要考查了利用導數研究函數的單調性和函數的最大(小)值與導數的相關知識點,需要掌握一般的,函數的單調性與其導數的正負有如下關系: 在某個區間內,(1)如果
,那么函數
在這個區間單調遞增;(2)如果
,那么函數
在這個區間單調遞減;求函數
在
上的最大值與最小值的步驟:(1)求函數
在
內的極值;(2)將函數
的各極值與端點處的函數值
,
比較,其中最大的是一個最大值,最小的是最小值才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】△ABC的三個頂點的坐標分別為A(1,0),B(3,0),C(3,4),則△ABC的外接圓方程是( )
A.(x-2)2+(y-2)2=20
B.(x-2)2+(y-2)2=10
C.(x-2)2+(y-2)2=5
D.(x-2)2+(y-2)2=
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數 ,
.
在
上有最大值9,最小值4.
(1)求實數 的值;
(2)若不等式 在
上恒成立,求實數
的取值范圍;
(3)若方程 有三個不同的實數根,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,直線l的參數方程為 t為參數).若以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,則曲線C的極坐標方程為
. (Ⅰ)求曲線C的直角坐標方程;
(Ⅱ)求直線l被曲線C所截得的弦長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一個盒子里裝有7張卡片,其中有紅色卡片4張,編號分別為1,2,3,4;白色卡片3張,編號分別為2,3,4.從盒子中任取4張卡片(假設取到任何一張卡片的可能性相同). (Ⅰ)求取出的4張卡片中,含有編號為3的卡片的概率.
(Ⅱ)在取出的4張卡片中,紅色卡片編號的最大值設為X,求隨機變量X的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一個地區共有5個鄉鎮,共30萬人,其人口比例為3∶2∶5∶2∶3,從這30萬人中抽取一個300人的樣本,分析某種疾病的發病率.已知這種疾病與不同的地理位置及水土有關,則應采取什么樣的抽樣方法?并寫出具體過程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一個幾何體,它的下面是一個圓柱,上面是一個圓錐,并且圓錐的底面與圓柱的上底面重合,圓柱的底面直徑為3 cm,高為4 cm,圓錐的高為3 cm,畫出此幾何體的直觀圖.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】雙曲線 ﹣
=1(a>0,b>0)上任意一點P可向圓x2+y2=(
)2作切線PA,PB,若存在點P使得
=0,則雙曲線的離心率的取值范圍是( )
A.[ ,+∞)
B.(1, ]
C.[ ,
)
D.(1, )
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com