【題目】已知向量a=(x+z,3),b=(2,y-z),且a⊥b.若x,y滿足不等式|x|+|y|≤1,則z的取值范圍是__________.
科目:高中數學 來源: 題型:
【題目】冪函數f(x)=x3m-5(m∈N)在(0,+∞)上是減函數,且f(-x)=f(x),則m可能等于( )
A. 0 B. 1
C. 2 D. 3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于函數,若存在實數對(
),使得等式
對定義域中的每一個
都成立,則稱函數
是“(
)型函數”.
(1) 判斷函數是否為 “(
)型函數”,并說明理由;
(2) 若函數是“(
)型函數”,求出滿足條件的一組實數對
;
(3)已知函數是“(
)型函數”,對應的實數對
為(1,4).當
時,
,若當
時,都有
,試求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙、丙三人獨立地對某一技術難題進行攻關。甲能攻克的概率為,乙能攻克的概率為
,丙能攻克的概率為
.
(1)求這一技術難題被攻克的概率;
(2)若該技術難題末被攻克,上級不做任何獎勵;若該技術難題被攻克,上級會獎勵萬元。獎勵規則如下:若只有1人攻克,則此人獲得全部獎金
萬元;若只有2人攻克,則獎金獎給此二人,每人各得
萬元;若三人均攻克,則獎金獎給此三人,每人各得
萬元。設甲得到的獎金數為X,求X的分布列和數學期望。(本題滿分12分)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某農科所對冬季晝夜溫差大小與某反季節大豆新品種發芽多少之間的關系進行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實驗室每天每100顆種子中的發芽數,得到如下資料:
日 期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差 | 10 | 11 | 13 | 12 | 8 |
發芽數 | 23 | 25 | 30 | 26 | 16 |
該農科所確定的研究方案是:先從這五組數據中選取2組,用剩下的3組數據求線性回歸方程,再對被選取的2組數據進行檢驗.
(1)求選取的2組數據恰好是不相鄰2天數據的概率;
(2)若選取的是12月1日與12月5日的兩組數據,請根據12月2日至12月4日的數據,求出y關于x的線性回歸方程;
(3)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
(注: )
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分10分,第(1)問 5分,第(2)問 5 分)
近年來,微信越來越受歡迎,許多人通過微信表達自己、交流思想和傳遞信息,微信是現代生活中進行信息交流的重要工具.而微信支付為用戶帶來了全新的支付體驗,支付環節由此變得簡便而快捷.某商場隨機對商場購物的名顧客進行統計,其中
歲以下占
,采用微信支付的占
,
歲以上采用微信支付的占
。
(1)請完成下面列聯表:
|
| 合計 | |
使用微信支付 | |||
未使用微信支付 | |||
合計 |
(2)并由列聯表中所得數據判斷有多大的把握認為“使用微信支付與年齡有關”?
參考公式: ,
.
參考數據:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市出租車收費標準如下:起步價為8元,起步里程為3 km(不超過3 km按起步價付費);超過3 km但不超過8 km時,超過部分按每千米2.15元收費;超過8 km時,超過部分按每千米2.85元收費,另每次乘坐需付燃油附加費1元.現某人乘坐一次出租車付費22.6元,則此次出租車行駛了________km.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形,四邊形ADEF是正方形,且BD⊥平面CDE,H是BE的中點,G是AE,DF的交點.
(1)求證:GH∥平面CDE;
(2)求證:面ADEF⊥面ABCD.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com