(1設
(1)當時,求f(x)的單調區間;
(2)求f(x)的零點個數
(1)減區間,增區間
;(2)見解析
解析試題分析:(1)先求出函數的定義域,然后在
的條件下對函數
求導,求出使得導數為0的自變量的取值,再根據函數的單調性與導數的關系判斷函數
的單調區間;(2) 對
的取值進行分類討論,當
時分
和
兩種情況,由
,
,結合零點存在性定理可知
在
上有一個零點;當
時,根據函數的單調性求得函數的極小值
,對極小值與0的關系分三種情況進行分類討論,結合零點存在性定理求得每種情況下的函數的零點個數
試題解析:(1)的定義域是
, 1分
當時,∵
2分
令,(負舍去) 3分
當時,
;當
時,
4分
所以是
的減區間,
是
的增區間, 5分
所以的減區間是
,
的增區間是
6分
(2)的定義域是
,∵
7分
當時,
在
上是增函數,當
時有零點
, 8分
當時,
9分
(或當時,
;當
時,
),
所以在
上有一個零點, 10分
當時,由(1)知,
在
上是減函數,
在
上是增函數,所以當
時,
有極小值,即最小值
11分
當,即
時,
無零點,
當,即
時,
有一個零點,
當,即
時,
有2個零點 13分
綜上可知,當
科目:高中數學 來源: 題型:解答題
已知函數f(x)=+3
-ax.
(1)若f(x)在x=0處取得極值,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若關于x的不等式f(x)≥+ax+1在x≥
時恒成立,試求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數在
上是增函數,
(1)求實數的取值集合
;
(2)當取值集合
中的最小值時,定義數列
;滿足
且
,
,求數列
的通項公式;
(3)若,數列
的前
項和為
,求證:
.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設函數
(1)當時,求函數
的最大值;
(2)令(
)其圖象上任意一點
處切線的斜率
≤
恒成立,求實數
的取值范圍;
(3)當,
,方程
有唯一實數解,求正數
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com