【題目】已知數列{an}滿足:a1=1,且當n2時,
(1)若=1,證明數列{a2n1}是等差數列;
(2)若=2.①設,求數列{bn}的通項公式;②設
,證明:對于任意的p,m N *,當p m,都有
Cm.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線
(
為參數),將曲線
上所有點橫坐標縮短為原來的
,縱坐標不變,得到曲線
,過點
且傾斜角為
的直線
與曲線
交于
、
兩點.
(1)求曲線的參數方程和
的取值范圍;
(2)求中點
的軌跡的參數方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】商家通常依據“樂觀系數準則”確定商品銷售價格,及根據商品的最低銷售限價a,最高銷售限價b(b>a)以及常數x(0<x<1)確定實際銷售價格c=a+x(b﹣a),這里,x被稱為樂觀系數.
經驗表明,最佳樂觀系數x恰好使得(c﹣a)是(b﹣c)和(b﹣a)的等比中項,據此可得,最佳樂觀系數x的值等于 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線x=﹣2上有一動點Q,過點Q作直線l,垂直于y軸,動點P在l1上,且滿足(O為坐標原點),記點P的軌跡為C.
(1)求曲線C的方程;
(2)已知定點M(,0),N(
,0),點A為曲線C上一點,直線AM交曲線C于另一點B,且點A在線段MB上,直線AN交曲線C于另一點D,求△MBD的內切圓半徑r的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】棋盤上標有第、
、
、
、
站,棋子開始位于第
站,棋手拋擲均勻硬幣走跳棋游戲,若擲出正面,棋子向前跳出一站;若擲出反面,棋子向前跳出兩站,直到調到第
站或第
站時,游戲結束.設棋子位于第
站的概率為
.
(1)當游戲開始時,若拋擲均勻硬幣次后,求棋手所走步數之和
的分布列與數學期望;
(2)證明:;
(3)求、
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某鮮花店根據以往某品種鮮花的銷售記錄,繪制出日銷售量的頻率分布直方圖,如圖所示.將日銷售量落入各組區間的頻率視為概率,且假設每天的銷售量相互獨立.
(1)求在未來的連續4天中,有2天的日銷售量低于100枝且另外2天不低于150枝的概率;
(2)用表示在未來4天里日銷售量不低于100枝的天數,求隨機變量
的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國古代數學名著《九章算術》中有這樣一些數學用語,“塹堵”意指底面為直角三角形,且側棱垂直于底面的三棱柱,而“陽馬”指底面為矩形,且有一側棱垂直于底面的四棱錐.現有一如圖所示的塹堵,,若
,當陽馬
體積最大時,則塹堵
的外接球體積為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某土特產超市為預估2020年元旦期間游客購買土特產的情況,對2019年元旦期間的90位游客購買情況進行統計,得到如下人數分布表.
購買金額(元) | ||||||
人數 | 10 | 15 | 20 | 15 | 20 | 10 |
(1)根據以上數據完成列聯表,并判斷是否有
的把握認為購買金額是否少于60元與性別有關.
不少于60元 | 少于60元 | 合計 | |
男 | 40 | ||
18 | |||
合計 |
(2)為吸引游客,該超市推出一種優惠方案,購買金額不少于60元可抽獎3次,每次中獎概率為(每次抽獎互不影響,且
的值等于人數分布表中購買金額不少于60元的頻率),中獎1次減5元,中獎2次減10元,中獎3次減15元.若游客甲計劃購買80元的土特產,請列出實際付款數
(元)的分布列并求其數學期望.
附:參考公式和數據:,
.
附表:
2.072 | 2.706 | 3.841 | 6.635 | 7.879 | |
0.150 | 0.100 | 0.050 | 0.010 | 0.005 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com