【題目】已知函數,
.
(1)討論函數的零點個數;
(2)求證:.
【答案】(1)見解析(2)見解析
【解析】試題分析:(1)對函數求導,研究函數的單調性,進而得到函數的變化趨勢,結合圖像得到函數的零點個數;(2)不等式可化為
,記
,證得
即可.
詳解:(1)由題,,所以當
時,
,
在
上單調遞增,當
時,
,
在
上單調遞減,∴
有極大值
.
且當時,
;
時,
,所以,當
或
時,
恰有一個零點;
時,
有兩個零點;
時,
沒有零點.
(2)由(1)可知,.①當
時,不等式
可化為
,記
,得
.
設,則
,
∴在
上單調遞增,又
,
,
在
上圖象是不間斷的,
∴存在唯一的實數,使得
,∴當
時,
,
,
在
上遞減,當
時,
,
,
在
上遞增,
∴當時,
有極小值,即為最小值,
,
又,所以
,所以
.
又,∴
,∴
,
所以,,即
.
②當時,設
,則
,
∴在
上單調遞減,∴
,
所以,
綜上所述,.
科目:高中數學 來源: 題型:
【題目】(2018·江西六校聯考)在△ABC中,角A,B,C所對的邊分別為a,b,c,a=4,b=4,cosA=-
.
(1)求角B的大。
(2)若f(x)=cos2x+sin2(x+B),求函數f(x)的單調遞增區間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在著名的漢諾塔問題中,有三根高度相同的柱子和一些大小及顏色各不相同的圓盤,三根柱子分別為起始柱、輔助柱及目標柱.已知起始柱上套有個圓盤,較大的圓盤都在較小的圓盤下面.現把圓盤從起始柱全部移到目標柱上,規則如下:每次只能移動一個圓盤,且每次移動后,每根柱上較大的圓盤不能放在較小的圓盤上面,規定一個圓盤從任一根柱上移動到另一根柱上為一次移動.若將
個圓盤從起始柱移動到目標柱上最少需要移動的次數記為
,則
( )
A. 33B. 31C. 17D. 15
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市地鐵全線共有四個車站,甲、乙兩人同時在地鐵第1號車站(首發站)乘車,假設每人自第2號站開始,在每個車站下車是等可能的,約定用有序實數對表示“甲在
號車站下車,乙在
號車站下車”
(Ⅰ)用有序實數對把甲、乙兩人下車的所有可能的結果列舉出來;
(Ⅱ)求甲、乙兩人同在第3號車站下車的概率;
(Ⅲ)求甲、乙兩人在不同的車站下車的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校從參加某次知識競賽的1000同學中,隨機抽取60名同學將其成績(百分制,均為整數)分成,
,
,
,
,
六組后,得到部分頻率分布直方圖(如圖),觀察圖形中的信息,回答下列問題:
(1)補全頻率分布直方圖,并估計本次知識競賽的均分;
(2)如果確定不低于85分的同學進入復賽,問這1000名參賽同學中估計有多少人進人復賽;
(3)若從第一組,第二組和第六組三組學生中分層抽取6人,再從這6人中隨機抽取2人,求所抽取的2人成績之差的絕對值大于20的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義一:對于一個函數,若存在兩條距離為
的直線
和
,使得
時,
恒成立,則稱函數
在
內有一個寬度為
的通道.
定義二:若一個函數對于任意給定的正數
,都存在一個實數
,使得函數
在
內有一個寬度為
的通道,則稱
在正無窮處有永恒通道.
下列函數①;②
;③
;④
;⑤
. 其中在正無窮處有永恒通道的函數序號是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(13分)設{an}是公比為正數的等比數列a1=2,a3=a2+4.
(Ⅰ)求{an}的通項公式;
(Ⅱ)設{bn}是首項為1,公差為2的等差數列,求數列{an+bn}的前n項和Sn.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某生物小組為了研究溫度對某種酶的活性的影響進行了一組實驗,得到的實驗數據經整理得到如下的折線圖:
(1)由圖可以看出,這種酶的活性與溫度
具有較強的線性相關性,請用相關系數加以說明;
(2)求關于
的線性回歸方程,并預測當溫度為
時,這種酶的活性指標值.(計算結果精確到0.01)
參考數據:,
,
,
.
參考公式:相關系數.
回歸直線方程,
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點F是拋物線C:y2=2px(p>0)的焦點,點M(x0,1)在C上,且|MF|=.
(1)求p的值;
(2)若直線l經過點Q(3,-1)且與C交于A,B(異于M)兩點,證明:直線AM與直線BM的斜率之積為常數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com