【題目】已知拋物線C:y=2x2和直線l:y=kx+1,O為坐標原點.
(1)求證:l與C必有兩交點;
(2)設l與C交于A(x1 , y1)、B(x2 , y2)兩點,且直線OA和OB的斜率之和為1,求k的值.
【答案】
(1)證明:拋物線C:y=2x2和直線l:y=kx+1,O為坐標原點,
聯立 ,得2x2﹣kx﹣1=0,
△=(﹣k)2+8=k2+8>0,
∴l與C必有兩交點.
(2)解:聯立 ,得2x2﹣kx﹣1=0,
△=(﹣k)2+8=k2+8>0,
設l與C交于A(x1,y1)、B(x2,y2)兩點,
則 ,x1x2=﹣
,
∵直線OA和OB的斜率之和為1,
∴kOA+kOB= =
=
=
= =1,
解得k=1
【解析】(1)聯立 ,得2x2﹣kx﹣1=0,利用根的判別式能證明l與C必有兩交點.(2)聯立
,得2x2﹣kx﹣1=0,設l與C交于A(x1,y1)、B(x2,y2)兩點,利用韋達定理、直線的斜率,結合已知條件能求出k的值.
科目:高中數學 來源: 題型:
【題目】給出30個數:1,2,4,7,…,其規律是:第1個數是1,第2個數比第1個數大1,第3個數比第2個數大2,第4個數比第3個數大3,依此類推.要計算這30個數的和,現已給出了該問題算法的程序框圖(如圖所示),請在圖中判斷框內①處和執行框中的②處填上合適的語句,使之能完成該題算法功能.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設點O為坐標原點,橢圓 的右頂點為A,上頂點為B,過點O且斜率為
的直線與直線AB相交M,且
.
(Ⅰ)求證:a=2b;
(Ⅱ)PQ是圓C:(x﹣2)2+(y﹣1)2=5的一條直徑,若橢圓E經過P,Q兩點,求橢圓E的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,內角A、B、C的對邊分別為a、b、c,且a>c,已知=2,cosB=
,b=3,求:
(1)a和c的值;
(2)cos(B-C)的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=cos(2x-
),x∈R.
(1)求函數f(x)單調遞減區間;
(2)求函數f(x)在區間[-,
]上的最小值和最大值,并求出取得最值時x的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲乙兩地相距海里,某貨輪勻速行駛從甲地運輸貨物到乙地,運輸成本包括燃料費用和其他費用.已知該貨輪每小時的燃料費與其速度的平方成正比,比例系數為
,其他費用為每小時
元,且該貨輪的最大航行速度為
海里/小時.
()請將該貨輪從甲地到乙地的運輸成本
表示為航行速度
(海里/小時)的函數.
()要使從甲地到乙地的運輸成本最少,該貨輪應以多大的航行速度行駛?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】乒乓球比賽規則規定:一局比賽,雙方比分在10平前,一方連續發球2次后,對方再連續發球2次,依次輪換.每次發球,勝方得1分,負方得0分.設在甲、乙的比賽中,每次發球,發球方得1分的概率為0.6,各次發球的勝負結果相互獨立.甲、乙的一局比賽中,甲先發球. (Ⅰ)求開始第4次發球時,甲、乙的比分為1比2的概率;
(Ⅱ)ξ表示開始第4次發球時乙的得分,求ξ的期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2x2+bx+c,不等式f(x)<0的解集是(0,5),若對于任意x∈[2,4],不等式f(x)+t≤2恒成立,則t的取值范圍為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知三棱柱ABC﹣A1B1C1的側棱與底面邊長都相等,A1在底面ABC上的射影D為BC的中點,則異面直線AB與CC1所成的角的余弦值為( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com