(1)計算:
(2)已知,求
的值.
科目:高中數學 來源: 題型:解答題
“地溝油”嚴重危害了人民群眾的身體健康,某企業在政府部門的支持下,進行技術攻關,新上了一種從“食品殘渣”中提煉出生物柴油的項目,經測算,該項目月處理成本y(元)與月處理量x(噸)之間的函數關系可以近似的表示為:
且每處理一噸“食品殘渣”,可得到能利用的生物柴油價值為200元,若該項目不獲利,政府將補貼.
(1)當x∈[200,300]時,判斷該項目能否獲利?如果獲利,求出最大利潤;如果不獲利,則政府每月至少需要補貼多少元才能使該項目不虧損;
(2)該項目每月處理量為多少噸時,才能使每噸的平均處理成本最低?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
對定義在上,并且同時滿足以下兩個條件的函數
稱為
函數。
①對任意的,總有
;
②當時,總有
成立。
已知函數與
是定義在
上的函數。
(1)試問函數是否為
函數?并說明理由;
(2)若函數是
函數,求實數
的值;
(3)在(2)的條件下,討論方程解的個數情況。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某工廠某種產品的年固定成本為250萬元,每生產千件,需另投入成本為
,當年產量不足80千件時,
(萬元).當年產量不小于80千件時,
(萬元).每件商品售價為500元.通過市場分析,該廠生產的商品能全部售完.
(1)寫出年利潤(萬元)關于年產量
(千件)的函數解析式;
(2)年產量為多少千件時,該廠在這一商品的生產中所獲利潤最大?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某工廠某種產品的年固定成本為250萬元,每生產千件,需另投入成本為
,當年產量不足80千件時,
(萬元).當年產量不小于80千件時,
(萬元).每件商品售價為0.05萬元.通過市場分析,該廠生產的商品能全部售完.
(Ⅰ)寫出年利潤(萬元)關于年產量
(千件)的函數解析式;
(Ⅱ)年產量為多少千件時,該廠在這一商品的生產中所獲利潤最大?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com