精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)=e2x+1﹣2mx﹣ m,其中m∈R,e為自然對數底數.
(1)討論函數f(x)的單調性;
(2)若不等式f(x)≥n對任意x∈R都成立,求mn的最大值.

【答案】
(1)解: ,x∈R,f'(x)=2e2x+1﹣2m,

①當m≤0時,f'(x)≥0,f(x)在R上單調遞增;

②當m>0時,令f'(x)=0,得

x

f'(x)

0

+

f(x)

極小值

綜上所述,當m≤0時,f(x)在R上單調遞增;

當m>0時,f(x)在 上單調遞減,在 上單調遞增


(2)解:由(1)可知,若m≤0,函數f(x)在R上單調遞增,

f(x)在R上無最小值,與題意矛盾,舍去;

所以m>0,f(x)在 上單調遞減,在 上單調遞增,

f(x)在R上的最小值為

因為不等式f(x)≥n對任意x∈R都成立,

所以 ,其中m>0,

,m>0,

,m>0,

令φ'(m)=0,解得m=1,

m

(0,1)

1

(1,+∞)

φ'(m)

+

0

φ(m)

極大值

所以 ,故

即mn的最大值為


【解析】(1)求出函數的導數,通過討論m的范圍,求出函數的單調區間即可;(2)問題轉化為 ,其中m>0,得到 ,m>0,令 ,m>0,根據函數的單調性求出mn的最大值即可.
【考點精析】認真審題,首先需要了解利用導數研究函數的單調性(一般的,函數的單調性與其導數的正負有如下關系: 在某個區間內,(1)如果,那么函數在這個區間單調遞增;(2)如果,那么函數在這個區間單調遞減).

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖所示,已知幾何體的三視圖,用斜二測畫法畫出它的直觀圖.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的中心在原點,焦點在x軸上,長軸長是短軸長的2倍且經過點M(2,1),平行于OM的直線l在y軸上的截距為m(m≠0),l交橢圓于A、B兩個不同點.
(1)求橢圓的標準方程以及m的取值范圍;
(2)求證直線MA,MB與x軸始終圍成一個等腰三角形.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知定義在 上的函數滿足 ,當 時, .
(1)求證: 為奇函數;
(2)求證: 上的增函數;
(3)解關于 的不等式: (其中 為常數).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】直角梯形ABCD如圖所示,分別以AB、BC、CD、DA所在直線為軸旋轉,試說明所得幾何體的大致形狀.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知g(x)是各項系數均為整數的多項式,f(x)=2x2﹣x+1,且滿足f(g(x))=2x4+4x3+13x2+11x+16,則g(x)的各項系數之和為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 ,a為正常數.
(1)若f(x)=lnx+φ(x),且 ,求函數f(x)的單調增區間;
(2)若g(x)=|lnx|+φ(x),且對任意x1 , x2∈(0,2],x1≠x2 , 都有 ,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知 是上、下底邊長分別為2和6,高為 的等腰梯形,將它沿對稱軸 折疊,使二面角 為直二面角.

(1)證明: ;
(2)求二面角 的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線C:y2=2px(p>0)的焦點為F,點M(2,m)為其上一點,且|MF|=4.
(1)求p與m的值;
(2)如圖,過點F作直線l交拋物線于A、B兩點,求直線OA、OB的斜率之積.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视