【題目】已知f(x)= (x∈R,且x≠﹣1),g(x)=x2+2(x∈R).
(1)求f(2),g(2)的值;
(2)求f(g(2)),g(f(2))的值;
(3)求f(g(x)).
科目:高中數學 來源: 題型:
【題目】已知f(x)=log2(1+x)+log2(1﹣x).
(1)求函數f(x)的定義域;
(2)判斷函數f(x)的奇偶性,并加以說明;
(3)求f( )的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=loga(3﹣ax).
(1)當 時,函數f(x)恒有意義,求實數a的取值范圍;
(2)是否存在這樣的實數a,使得函數f(x)在區間[2,3]上為增函數,并且f(x)的最大值為1.如果存在,試求出a的值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,內角A,B,C的對邊分別為a,b,c,已知2ccosA+a=2b.
(1)求角C的值;
(2)若a+b=4,當c取最小值時,求△ABC的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一次函數g(x)滿足g[g(x)]=9x+8,則g(x)是( )
A.g(x)=9x+8
B.g(x)=3x+8
C.g(x)=﹣3x﹣4
D.g(x)=3x+2或g(x)=﹣3x﹣4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=lnx,則函數g(x)=f(x)﹣f′(x)的零點所在的區間是( )
A.(0,1)
B.(1,2)
C.(2,3)
D.(3,4)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)(x>0)的導函數為f′(x),若xf′(x)+f(x)=ex , 且f(1)=e,則( )
A.f(x)的最小值為e??
B.f(x)的最大值為e
C.f(x)的最小值為 ??
D.f(x)的最大值為
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com