【題目】2002年在北京召開的國際數學家大會的會標是以我國古代數學家的弦圖為基礎設計的.弦圖是由四個全等的直角三角形與一個小正方形拼成的一個大正方形(如圖).設其中直角三角形中較小的銳角為,且
,如果在弦圖內隨機拋擲1000米黑芝麻(大小差別忽略不計),則落在小正方形內的黑芝麻數大約為( )
A. 350B. 300C. 250D. 200
科目:高中數學 來源: 題型:
【題目】曲線C1:y=cosx,曲線C2:y=sin2x,下列說法正確的是( )
A.將C1上所有點橫坐標擴大到原來的2倍,縱坐標不變,再將所得曲線向左平移個單位,得到C2
B.將C1上所有點橫坐標縮小到原來的,縱坐標不變,再將所得曲線向左平移
個單位,得到C2
C.將C1上所有點橫坐標擴大到原來的2倍,縱坐標不變,再將所得曲線向右平移個單位,得到C2
D.將C1上所有點橫坐標縮小到原來的,縱坐標不變,再將所得曲線向右平移
個單位,得到C2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若在兩個成語中,一個成語的末字恰是另一成語的首字,則稱這兩個成語有頂真關系,現從分別貼有成語“人定勝天”、“爭先恐后”、“一馬當先”、“天馬行空”、“先發制人”的5張大小形狀完全相同卡片中,任意抽取2張,則這2張卡片上的成語有頂真關系的概率為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學為了了解全校學生的上網情況,在全校采用隨機抽樣的方法抽取了40名學生(其中男女生人數恰好各占一半)進行問卷調查,并進行了統計,按男女分為兩組,再將每組學生的月上網次數為5組: ,
,
,
,
,得到如圖所示的頻率分布直方圖:
(Ⅰ)寫出的值;
(Ⅱ)求在抽取的40名學生中月上網次數不少于15次的學生人數;
(Ⅲ)在抽取的40名學生中,從月上網次數不少于20次的學生中隨機抽取2人,求至少抽到1名女生的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】唐三彩是中國古代陶瓷燒制工藝的珍品,它吸取了中國國畫、雕塑等工藝美術的特點,在中國文化中占有重要的歷史地位,在陶瓷史上留下了濃墨重彩的一筆.唐三彩的生產至今已有1300多年的歷史,制作工藝十分復雜,而且優質品檢驗異常嚴格,檢驗方案是:先從燒制的這批唐三彩中任取 3件作檢驗,這3件唐三彩中優質品的件數記為.如果
,再從這批唐三彩中任取3件作檢驗,若都為優質品,則這批唐三彩通過檢驗;如果
,再從這批唐三彩中任取1件作檢驗,若為優質品,則這批唐三彩通過檢驗;其他情況下,這批唐三彩都不能通過檢驗.假設這批唐三彩的優質品概率為
,即取出的每件唐三彩是優質品的概率都為
,且各件唐三彩是否為優質品相互獨立.
(1)求這批唐三彩通過優質品檢驗的概率;
(2)已知每件唐三彩的檢驗費用為100元,且抽取的每件唐三彩都需要檢驗,對這批唐三彩作質量檢驗所需的總費用記為元,求
的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的左、右焦點分別為
,過
任作一條與兩條坐標軸都不垂直的直線,與橢圓
交于
兩點,且
的周長為8,當直線
的斜率為
時,
與
軸垂直.
(Ⅰ)求橢圓的方程;
(Ⅱ)在軸上是否存在定點
,總能使
平分
?說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4— 4:坐標系與參數方程
設極坐標系與直角坐標系有相同的長度單位,原點
為極點,
軸正半軸為極軸,曲線
的參數方程為
(
是參數),直線
的極坐標方程為
.
(Ⅰ)求曲線的普通方程和直線
的參數方程;
(Ⅱ)設點,若直線
與曲線
相交于
兩點,且
,求
的值﹒
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com