C
分析:f(0)=0?f(0)=Asin(ω×0+?)=Asin?=0??=kπ,k∈Z?f(x)=Asin(ωx+?)(A>0,ω>0,x∈R)是奇函數.f(x)為奇函數??=kπ,k∈Z?f(0)=Asin(ω×0+kπ)=Asinkπ=0.所以f(0)=0是f(x)為奇函數的充要條件.
解答:若f(0)=0,
則f(0)=Asin(ω×0+?)=Asin?=0,
∴?=kπ,k∈Z,
∴f(x)=Asin(ωx+?)(A>0,ω>0,x∈R)是奇函數.
若f(x)為奇函數,
則?=kπ,k∈Z,
∴f(0)=Asin(ω×0+kπ)=Asinkπ=0.
所以f(0)=0是f(x)為奇函數的充要條件.
故選C.
點評:本題考查充分條件、必要條件和充要條件的判斷,解題時要認真審題,仔細解答,注意三角函數性質的靈活運用.