【題目】定義在上的偶函數
,當
時,
.
Ⅰ.寫出在
上的解析式;
Ⅱ.求出在
上的最大值;
Ⅲ.若是
上的增函數,求實數
的取值范圍。
科目:高中數學 來源: 題型:
【題目】給出下列4個命題,其中正確命題的個數是( )
①計算:9192除以100的余數是1;
②命題“x>0,x﹣lnx>0”的否定是“x>0,x﹣lnx≤0”;
③y=tanax(a>0)在其定義域內是單調函數而且又是奇函數;
④命題p:“|a|+|b|≤1”是命題q:“對任意的x∈R,不等式asinx+bcosx≤1恒成立”的充分不必要條件.
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本題滿分8分)某班50名學生在一次數學測試中,成績全部介于50與100之間,將測試結果按如下方式分成五組:第一組[50,60),第二組[60,70),…,第五組[90,100].如圖所示是按上述分組方法得到的頻率分布直方圖.
(Ⅰ)若成績大于或等于60且小于80,認為合格,求該班在這次數學測試中成績合格的人數;
(Ⅱ)從測試成績在[50,60)∪[90,100]內的所有學生中隨機抽取兩名同學,設其測試成績分別為m、n,求事件“|m﹣n|>10”概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)求曲線在點
處的切線方程;
(2)設,計算
的導數.
【答案】(1).(2)
.
【解析】試題分析:(1)由導數的基本定義就出斜率,根據點斜式寫出切線方程;(2)
,
.
試題解析:
(1),則
,
又,∴所求切線方程為
,即
.
(2),
.
【題型】解答題
【結束】
18
【題目】對某校高一年級學生參加社區服務次數進行統計,隨機抽取名學生作為樣本,得到這
名學生參加社區服務的次數.根據此數據作出了頻數與頻率的統計表和頻率分布直方圖如下:
(1)求出表中及圖中
的值;
(2)若該校高一學生有800人,試估計該校高一學生參加社區服務的次數在區間內的人數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知各項均為正數的數列{an}的前n項和Sn>1,且6Sn=(an+1)(an+2),n∈N* .
(1)求{an}的通項公式;
(2)若數列{bn}滿足bn= ,求{bn}的前n項和.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的側面PAD是正三角形,底面ABCD為菱形,A點E為AD的中點,若BE=PE.
(1)求證:PB⊥BC;
(2)若∠PEB=120°,求二面角A﹣PB﹣C的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設定義在上的函數
對于任意實數
,都有
成立,且
,當
時,
.
(1)判斷的單調性,并加以證明;
(2)試問:當時,
是否有最值?如果有,求出最值;如果沒有,說明理由;
(3)解關于的不等式
,其中
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數f(x)滿足f(x+1)-f(x)=-2x+1,且f(2)=15.
(1)求函數f(x)的解析式;
(2) 令g(x)=(2-2m)x-f(x).
① 若函數g(x)在x∈[0,2]上是單調函數,求實數m的取值范圍;
② 求函數g(x)在x∈[0,2]上的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com