精英家教網 > 高中數學 > 題目詳情

【題目】將函數f(x)=2sin2x的圖象向左平移 個單位后得到函數g(x)的圖象,若函數g(x)在區間[0, ]和[2a, ]上均單調遞增,則實數a的取值范圍是(
A.[ ]
B.[ , ]
C.[ , ]
D.[ , ]

【答案】A
【解析】解:將函數f(x)=2sin2x的圖象向左平移 個單位后得到函數g(x)=2sin2(x+ )=2sin(2x+ )的圖象, 若函數g(x)在區間[0, ]和[2a, ]上均單調遞增,∴a>0,0+ = ,2 + ,且 2kπ﹣ ≤22a+ ,2 + ≤2kπ+ ,k∈Z.
求得 ≤a≤ ,
故選:A.
【考點精析】本題主要考查了函數y=Asin(ωx+φ)的圖象變換的相關知識點,需要掌握圖象上所有點向左(右)平移個單位長度,得到函數的圖象;再將函數的圖象上所有點的橫坐標伸長(縮短)到原來的倍(縱坐標不變),得到函數的圖象;再將函數的圖象上所有點的縱坐標伸長(縮短)到原來的倍(橫坐標不變),得到函數的圖象才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】以下幾個命題中真命題的序號為
①在空間中,m、n是兩條不重合的直線,α、β是兩個不重合的平面,如果α⊥β,α∩β=n,m⊥n,那么m⊥β;
②相關系數r的絕對值越接近于1,兩個隨機變量的線性相關性越強;
③用秦九昭算法求多項式f(x)=208+9x2+6x4+x6在x=﹣4時,v2的值為22;
④過拋物線y2=4x的焦點作直線與拋物線相交于A、B兩點,則使它們的橫坐標之和等于4的直線有且只有兩條.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】關于x的不等式 >1+ (其中k∈R,k≠0).
(1)若x=3在上述不等式的解集中,試確定k的取值范圍;
(2)若k>1時,上述不等式的解集是x∈(3,+∞),求k的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知E、F、G、H為空間四邊形ABCD的邊AB、BC、CD、DA上的點,且EH∥FG.求證:
(1)EH∥面BCD;
(2)EH∥BD.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如今我們的互聯網生活日益豐富,除了可以很方便地網購,網上叫外賣也開始成為不少人日常生活中不可或缺的一部分.為了解網絡外賣在市的普及情況, 市某調查機構借助網絡進行了關于網絡外賣的問卷調查,并從參與調查的網民中抽取了200人進行抽樣分析,得到表格:(單位:人)

經常使用網絡外賣

偶爾或不用網絡外賣

合計

男性

50

50

100

女性

60

40

100

合計

110

90

200

(1)根據表中數據,能否在犯錯誤的概率不超過的前提下認為市使用網絡外賣的情況與性別有關?

(2)①現從所抽取的女網民中利用分層抽樣的方法再抽取5人,再從這5人中隨機選出3人贈送外賣優惠券,求選出的3人中至少有2人經常使用網絡外賣的概率;

②將頻率視為概率,從市所有參與調查的網民中隨機抽取10人贈送禮品,記其中經常使用網絡外賣的人數為,求的數學期望和方差.

參考公式: ,其中.

參考數據:

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知平面內三個向量: =(3,2), =(﹣1,2), =(4,1) (Ⅰ)若( +k )∥(2 ),求實數k的值;
(Ⅱ)設 =(x,y),且滿足( + )⊥( ),| |= ,求

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】數列{an}的前n項和Sn=an﹣1,則關于數列{an}的下列說法中,正確的個數有(
①一定是等比數列,但不可能是等差數列
②一定是等差數列,但不可能是等比數列
③可能是等比數列,也可能是等差數列
④可能既不是等差數列,又不是等比數列
⑤可能既是等差數列,又是等比數列.
A.4
B.3
C.2
D.1

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}中,a1=1,an=an1+3(n≥2,n∈N*),數列{bn}滿足bn= ,n∈N* , 則 (b1+b2+…+bn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知曲線C:9x2+4y2=36,直線l: (t為參數)

(Ⅰ)寫出曲線C的參數方程,直線l的普通方程;

(Ⅱ)過曲線C上任意一點P作與l夾角為30°的直線,交l于點A,求|PA|的最大值與最小值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视