精英家教網 > 高中數學 > 題目詳情

【題目】已知曲線C:9x2+4y2=36,直線l: (t為參數)

(Ⅰ)寫出曲線C的參數方程,直線l的普通方程;

(Ⅱ)過曲線C上任意一點P作與l夾角為30°的直線,交l于點A,求|PA|的最大值與最小值.

【答案】(I) , (II)|PA|的最大值與最小值分別為

【解析】試題分析:I)曲線C9x2+4y2=36,化為 ,利用cos2θ+sin2θ=1可得參數方程.直線l t為參數),即 ,即可化為普通方程.

II)點P2cosθ,3sinθ)到直線l的距離 ,利用|PA|==2d即可得出.

試題解析:

(I)曲線C9x2+4y2=36,化為,可得參數方程:

直線l t為參數),即,化為:2x+y6=0

II)點P2cosθ,3sinθ)到直線l的距離,

|PA|==2d

|PA|的最大值與最小值分別為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】將函數f(x)=2sin2x的圖象向左平移 個單位后得到函數g(x)的圖象,若函數g(x)在區間[0, ]和[2a, ]上均單調遞增,則實數a的取值范圍是(
A.[ ]
B.[ , ]
C.[ , ]
D.[ , ]

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某產品生產廠家根據以往銷售經驗得到下面有關生產銷售的統計規律:每生產產品x(百臺),其總成本為g(x)(萬元),其中固定成本為2萬元,并且每生產1百臺的生產成本為1萬元(總成本=固定成本+生產成本);銷售收入R(x)(萬元)滿足: 假設該產品產銷平衡,試根據上述資料分析:
(1)要使工廠有盈利,產量x應控制在什么范圍內;
(2)工廠生產多少臺產品時,可使盈利最多?
(3)當盈利最多時,求每臺產品的售價.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在調查中學生是否抽過煙的時候,給出兩個問題作答,無關緊要的問題是:“你的身份證號碼的尾數是奇數嗎?”敏感的問題是:“你抽過煙嗎?”然后要求被調查的中學生擲一枚質地均勻的骰子一次,如果出現奇數點,就回答第一個問題,否則回答第二個問題,由于回答哪一個問題只有被測試者自己知道,所以應答者一般樂意如實地回答問題,如我們把這種方法用于300個被調查的中學生,得到80個“是”的回答,則這群人中抽過煙的百分率大約為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2016年某招聘會上,有5個條件很類似的求職者,把他們記為A,B,C,D,E,他們應聘秘書工作,但只有2個秘書職位,因此5人中僅有2人被錄用,如果5個人被錄用的機會相等,分別計算下列事件的概率:
(1)C得到一個職位
(2)B或E得到一個職位.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,矩形ABCD所在的平面與正方形ADPQ所在的平面相互垂直,E是QD的中點. (Ⅰ)求證:QB∥平面AEC;
(Ⅱ)求證:平面QDC⊥平面AEC;
(Ⅲ)若AB=1,AD=2,求多面體ABCEQ的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】假設關于某設備的使用年限x和所支出的維修費用y(萬元),有如下的統計數據(xi , yi)(i=1,2,3,4,5)由資料知y對x呈線性相關,并且統計的五組數據得平均值分別為 , ,若用五組數據得到的線性回歸方程 =bx+a去估計,使用8年的維修費用比使用7年的維修費用多1.1萬元,
(1)求回歸直線方程;
(2)估計使用年限為10年時,維修費用是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直三棱柱ABC﹣A1B1C1中,∠ABC=90°,AB=BC=BB1 , 求異面直線A1B與B1C所成的角

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列命題是真命題的是(
A.a>b是ac2>bc2的充要條件
B.a>1,b>1是ab>1的充分條件
C.?x0∈R,e ≤0
D.若p∨q為真命題,則p∧q為真

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视