【題目】2016年某招聘會上,有5個條件很類似的求職者,把他們記為A,B,C,D,E,他們應聘秘書工作,但只有2個秘書職位,因此5人中僅有2人被錄用,如果5個人被錄用的機會相等,分別計算下列事件的概率:
(1)C得到一個職位
(2)B或E得到一個職位.
【答案】
(1)解:5人中有2人被錄用的基本事件共有10個,分別為:
(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E),
C得到一職位包含的基本事件有4個,分別為(A,C),(B,C),(C,D),(C,E),
∴C得到一個職位的概率P1=
(2)解:B或E得到一個職位,包含的基本事件個數有7個,分別為:
(A,B),(A,E),(B,C),(B,D),(B,E),(C,E),(D,E),
∴B或E得到一個職位的概率P2=
【解析】(1)利用列舉法求出5人中有2人被錄用的基本事件共有10個,C得到一職位包含的基本事件有4個,由此能求出C得到一個職位的概率.(2)利用列舉法求出B或E得到一個職位,包含的基本事件個數,由此能求出B或E得到一個職位的概率.
科目:高中數學 來源: 題型:
【題目】如今我們的互聯網生活日益豐富,除了可以很方便地網購,網上叫外賣也開始成為不少人日常生活中不可或缺的一部分.為了解網絡外賣在市的普及情況,
市某調查機構借助網絡進行了關于網絡外賣的問卷調查,并從參與調查的網民中抽取了200人進行抽樣分析,得到表格:(單位:人)
經常使用網絡外賣 | 偶爾或不用網絡外賣 | 合計 | |
男性 | 50 | 50 | 100 |
女性 | 60 | 40 | 100 |
合計 | 110 | 90 | 200 |
(1)根據表中數據,能否在犯錯誤的概率不超過的前提下認為
市使用網絡外賣的情況與性別有關?
(2)①現從所抽取的女網民中利用分層抽樣的方法再抽取5人,再從這5人中隨機選出3人贈送外賣優惠券,求選出的3人中至少有2人經常使用網絡外賣的概率;
②將頻率視為概率,從市所有參與調查的網民中隨機抽取10人贈送禮品,記其中經常使用網絡外賣的人數為
,求
的數學期望和方差.
參考公式: ,其中
.
參考數據:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐P﹣ABC中,PA=PC=5,PB=4,AB=BC=2 ,∠ACB=30°,PA=PC=5,PB=4,AB=BC=2
,∠ACB=30°.
(1)求證:AC⊥PB;
(2)求三棱錐P﹣ABC的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=ln(1+|x|)﹣ ,則使得f(x)>f(2x﹣1)成立的取值范圍是( )
A.(﹣∞, )∪(1,+∞)?
B.( ,1)
C.(- ,
)?
D.(﹣∞,﹣ ,)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知極坐標系的極點在平面直角坐標系的原點處,極軸與
軸的正半軸重合,且長度單位相同;曲線
的方程是
,直線
的參數方程為
(
為參數,
),設
, 直線
與曲線
交于
兩點.
(1)當時,求
的長度;
(2)求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線C:9x2+4y2=36,直線l: (t為參數)
(Ⅰ)寫出曲線C的參數方程,直線l的普通方程;
(Ⅱ)過曲線C上任意一點P作與l夾角為30°的直線,交l于點A,求|PA|的最大值與最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,已知曲線
(
為參數),在以原點
為極點,
軸的非負半軸為極軸建立的機坐標系中,直線
的極坐標方程為
.
(1)求曲線的普通方程和直線
的直角坐標方程;
(2)過點且與直線
平行的直線
交
于
兩點,求點
到
兩點的距離之積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知平面向量 ,
滿足|
|=1,|
|=2.
(1)若 與
的夾角θ=120°,求|
+
|的值;
(2)若(k +
)⊥(k
﹣
),求實數k的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為響應國家治理環境污染的號召,增強學生的環保意識,宿州市某中學舉行了一次環保知識競賽,共有900名學生參加了這次競賽,為了解本次競賽的成績情況,從中抽取了l00學生的成績進行統計,成績頻率分布直方圖如圖所示.估計這次測試中成績的眾數為;平均數為;中位數為 . (各組平均數取中值計算,保留整數)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com