【題目】從裝有個紅球和
個黒球的口袋內任取
個球,則互為對立事件是( )
A. 至少有一個黒球與都是黒球B. 至少有一個黒球與都是紅球
C. 至少有一個黒球與至少有個紅球D. 恰有
個黒球與恰有
個黒球
【答案】B
【解析】
列舉每個事件所包含的基本事件,結合互斥事件和對立事件的定義,依次驗證即可.
對于A:事件:“至少有一個黑球”與事件:“都是黑球”可以同時發生,如:一個紅球一個黑球,∴A不正確;
對于B:事件:“至少有一個黑球”與事件:“都是紅球”,這兩個事件是對立事件,∴B正確
對于C:事件:“至少有一個黑球”與事件:“至少有1個紅球”可以同時發生,如:一個紅球一個黑球,∴C不正確
對于D:事件:“恰有一個黑球”與“恰有2個黑球”不能同時發生,∴這兩個事件是互斥事件,
又由從裝有2個紅球和2個黑球的口袋內任取2個球,得到所有事件為“恰有1個黑球”與“恰有2個黑球”以及“恰有2個紅球”三種情況,故這兩個事件是不是對立事件,∴D不正確
故選B.
科目:高中數學 來源: 題型:
【題目】汽車的“燃油效率”是指汽車每消耗1升汽油行駛的里程,下圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況. 下列敘述中正確的是( )
A. 消耗1升汽油,乙車最多可行駛5千米
B. 以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多
C. 甲車以80千米/小時的速度行駛1小時,消耗10升汽油
D. 某城市機動車最高限速80千米/小時. 相同條件下,在該市用丙車比用乙車更省油
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分)
某企業生產A,B兩種產品,根據市場調查與預測,A產品的利潤與投資成正比,其關系如圖1;B產品的利潤與投資的算術平方根成正比,其關系如圖2(注:利潤和投資單位:萬元).
(1)分別將A、B兩種產品的利潤表示為投資的函數關系式;
(2)已知該企業已籌集到18萬元資金,并將全部投入A,B兩種產品的生產.
①若平均投入生產兩種產品,可獲得多少利潤?
②問:如果你是廠長,怎樣分配這18萬元投資,才能使該企業獲得最大利潤?其最大利潤約為多少萬元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,g(x)=-x2+2bx-4,若對任意的x1∈(0,2),任意的x2∈[1,2],不等式f(x1)≥g(x2)恒成立,則實數b的取值范圍是( )
A. B. (1,+∞)
C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓(a>b>0)的一個焦點與拋物線y2=4
x的焦點F重合,且橢圓短軸的兩個端點與點F構成正三角形.
(1)求橢圓的方程;
(2)若過點(1,0)的直線l與橢圓交于不同的兩點P,Q,試問在x軸上是否存在定點E(m,0),使恒為定值?若存在,求出E的坐標,并求出這個定值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】黨的十八大以來,我國精準扶貧已經實施了六年,我國貧困人口從2012年的9899萬人,減少到2018年的1660萬人,2019年將努力實現減少貧困人口1000萬人以上的目標,力爭2020年在現行標準下,農村貧困人口全部脫貧,貧困縣全部脫貧摘帽.某市為深入分析該市當前扶貧領域存在的突出問題,市扶貧辦近三年來,每半年對貧困戶(用表示,單位:萬戶)進行取樣,統計結果如圖所示,從2016年6月底到2019年6月底的共進行了七次統計,統計時間用序號
表示,例如:2016年12月底(時間序號為2)貧困戶為5.2萬戶.
(1)求關于
的線性回歸方程
,并預測到2020年12月底,該市能否實現貧困戶全部脫貧;
(2)為盡快打贏脫貧攻堅戰,該市扶貧辦在2019年6月底時,對全市貧困戶隨機抽取了100戶貧困戶,對每個家庭最主要經濟收入來源進行抽樣調查,統計結果如圖.并決定據此選派一批農業技術人員對全市所有貧困戶中,家庭最主要經濟收入來源為養殖收入和種植收入的貧困戶進行對口幫扶,每一名農業技術人員對口幫扶貧困戶90戶,則該市應分別安排多少農業技術人員對家庭最主要經濟收入來源為養殖收入和種植收入的貧困戶進行對口幫扶?
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:
,
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com