【題目】已知點的坐標分別為
,直線
相交于點
,且它們的斜率之積是
,點
的軌跡為曲線
.
(Ⅰ)求的方程;
(Ⅱ)過點作直線
交曲線
于
兩點,交
軸于
點,若
,
,證明:
為定值.
科目:高中數學 來源: 題型:
【題目】已知A、B、C是橢圓M: =1(a>b>0)上的三點,其中點A的坐標為
,BC過橢圓M的中心,且
.
(1)求橢圓M的方程;
(2)過點(0,t)的直線l(斜率存在時)與橢圓M交于兩點P、Q,設D為橢圓M與y軸負半軸的交點,且 ,求實數t的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(數學文卷·2017屆湖北省黃岡市高三上學期期末考試第16題) “中國剩余定理”又稱“孫子定理”.1852年英國來華傳教偉烈亞利將《孫子算經》中“物不知數”問題的解法傳至歐洲.1874年,英國數學家馬西森指出此法符合1801年由高斯得出的關于同余式解法的一般性定理,因而西方稱之為“中國剩余定理”. “中國剩余定理”講的是一個關于整除的問題,現有這樣一個整除問題:將2至2017這2016個數中能被3除余1且被5除余1的數按由小到大的順序排成一列,構成數列,則此數列的項數為__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校的平面示意圖為如下圖五邊形區域,其中三角形區域
為生活區,四邊形區域
為教學區,
為學校的主要道路(不考慮寬度).
.
(1)求道路的長度;(2)求生活區
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=loga(x+1),g(x)=loga ,(a>0且a≠1).記F(x)=2f(x)+g(x).
(1)求函數F(x)的零點;
(2)若關于x的方程F(x)﹣2m2+3m+5=0在區間[0,1)內僅有一解,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學生物興趣小組在學校生物園地種植了一批名貴樹苗,為了了解樹苗生長情況,從這批樹苗中隨機地測量了其中50棵樹苗的高度(單位:厘米).把這些高度列成了如下的頻率分布表:
(1)在這批樹苗中任取一棵,其高度不低于80厘米的概率大約是多少?
(2)這批樹苗的平均高度大約是多少?(用各組的中間值代替各組數據的平均值)
(3)為了進一步獲得研究資料,若從組中移出一棵樹苗,從
組中移出兩棵樹苗進行試驗研究,則
組中的樹苗
和
組中的樹苗
同時被移出的概率是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某服裝廠生產一種服裝,每件服裝的成本為40元,出廠單價定為60元,該廠為鼓勵銷售商訂購,決定當一次訂購量超過100件時,每多訂購一件,訂購的全部服裝的出場單價就降低0.02元,根據市場調查,銷售商一次訂購量不會超過600件.
(1)設一次訂購x件,服裝的實際出廠單價為p元,寫出函數p=f(x)的表達式;
(2)當銷售商一次訂購多少件服裝時,該廠獲得的利潤最大?其最大利潤是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】f(x)是定義在R上的函數,且對任意的x、y都有f(x+y)=f(x)+f(y)﹣1成立.當x>0時,f(x)>1.
(1)若f(4)=5,求f(2);
(2)證明:f(x)在R上是增函數;
(3)若f(4)=5,解不等式f(3m2﹣m﹣2)<3.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com