【題目】已知點與點
都在橢圓
上,且
的左集點為
,過點
的直線交橢圓
于
,
兩點.
(1)求的方程;
(2)若以為直徑的圓經過點
,求直線
的方程.
科目:高中數學 來源: 題型:
【題目】已知圓的方程為
,直線
的方程為
,點
在直線上,過點
作圓
的切線
,切點為
.
(1)若過點的坐標為
,求切線
方程;
(2)求四邊形面積的最小值;
(3)求證:經過三點的圓必過定點,并求出所有定點坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率是
,短軸的一個端點到右焦點的距離為
,直線
與橢圓
交于
兩點.
(1)求橢圓的方程;
(2)當實數變化時,求
的最大值;
(3)求面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,已知曲線C1:(α為參數),在以O為極點,x軸正半軸為極軸的極坐標系中,曲線C2:ρcos
=-
,曲線C3:ρ=2sin θ.
(1)求曲線C1與C2的交點M的直角坐標;
(2)設點A,B分別為曲線C2,C3上的動點,求|AB|的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】經觀測,某公路段在某時段內的車流量(千輛/小時)與汽車的平均速度
(千米/小時)之間有函數關系:
.
(1)在該時段內,當汽車的平均速度為多少時車流量
最大?最大車流量為多少?(精確到0.01)
(2)為保證在該時段內車流量至少為10千輛/小時,則汽車的平均速度應控制在什么范圍內?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了了解居民的用電情況,某地供電局抽查了該市若干戶居民月均用電量(單位:),并將樣本數據分組為
,
,
,
,
,
,
,其頻率分布直方圖如圖所示.
(1)若樣本中月均用電量在的居民有
戶,求樣本容量;
(2)求月均用電量的中位數;
(3)在月均用電量為,
,
,
的四組居民中,用分層隨機抽樣法抽取
戶居民,則月均用電量在
的居民應抽取多少戶?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】根據某電子商務平臺的調查統計顯示,參與調查的1 000位上網購物者的年齡情況如圖所示.
(1)已知[30,40),[40,50),[50,60)三個年齡段的上網購物者人數成等差數列,求的值;
(2)該電子商務平臺將年齡在[30,50)內的人群定義為高消費人群,其他年齡段的人群定義為潛在消費人群,為了鼓勵潛在消費人群的消費,該平臺決定發放代金券,高消費人群每人發放50元的代金券,潛在消費人群每人發放100元的代金券,現采用分層抽樣的方式從參與調查的1 000位上網購物者中抽取10人,并在這10人中隨機抽取3人進行回訪,求此3人獲得代金券總和(單位:元)的分布列與數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4,極坐標與參數方程
已知在平面直角坐標系中,
為坐標原點,曲線
(
為參數),在以平面直角坐標系的原點為極點,
軸的正半軸為極軸,取相同單位長度的極坐標系中,直線
的極坐標方程為
.
(1)求曲線的普通方程和直線
的直角坐標方程;
(2)直線與
軸的交點
,經過點
的直線
與曲線
交于
兩點,若
,求直線
的傾斜角.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com