精英家教網 > 高中數學 > 題目詳情

【題目】已知中心在原點的橢圓與雙曲線有公共焦點,左、右焦點分別為F1、F2 , 且兩條曲線在第一象限的交點為P,△PF1F2是以PF1為底邊的等腰三角形.若|PF1|=10,橢圓與雙曲線的離心率分別為e1、e2 , 則e1e2+1的取值范圍為(
A.(1,+∞)
B.( ,+∞)
C.( ,+∞)
D.( ,+∞)

【答案】B
【解析】解:設橢圓和雙曲線的半焦距為c,|PF1|=m,|PF2|=n,(m>n), 由于△PF1F2是以PF1為底邊的等腰三角形.若|PF1|=10,
即有m=10,n=2c,
由橢圓的定義可得m+n=2a1 ,
由雙曲線的定義可得m﹣n=2a2 ,
即有a1=5+c,a2=5﹣c,(c<5),
再由三角形的兩邊之和大于第三邊,可得2c+2c=4c>10,
則c> ,即有 <c<5.
由離心率公式可得e1e2= = = ,
由于1< <4,則有
則e1e2+1
∴e1e2+1的取值范圍為( ,+∞).
故選:B.
設橢圓和雙曲線的半焦距為c,|PF1|=m,|PF2|=n,(m>n),由條件可得m=10,n=2c,再由橢圓和雙曲線的定義可得a1=5+c,a2=5﹣c,(c<5),運用三角形的三邊關系求得c的范圍,再由離心率公式,計算即可得到所求范圍.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知a∈R,若 在區間(0,1)上只有一個極值點,則a的取值范圍為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)=|x﹣a|,a∈R. (Ⅰ)當a=2時,解不等式:f(x)≥6﹣|2x﹣5|;
(Ⅱ)若關于x的不等式f(x)≤4的解集為[﹣1,7],且兩正數s和t滿足2s+t=a,求證:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f (x)=lnx﹣mx+m.
(1)若f (x)≤0在x∈(0,+∞)上恒成立,求實數m的取值范圍;
(2)在(1)的條件下,對任意的0<a<b,求證:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】長方體ABCDA1B1C1D1中,ABBC=2,D1D=3,點MB1C1的中點,點NAB的中點.建立如圖所示的空間直角坐標系.

(1)寫出點DN、M的坐標;
(2)求線段MD、MN的長度.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知一艘海監船O上配有雷達,其監測范圍是半徑為25 km的圓形區域,一艘外籍輪船從位于海監船正東40 km的A處出發,徑直駛向位于海監船正北30 km的B處島嶼,速度為28 km/h.

問:這艘外籍輪船能否被海監船監測到?若能,持續時間多長?(要求用坐標法)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=xlnx.
(1)不等式f(x)>kx﹣ 對于任意正實數x均成立,求實數k的取值范圍;
(2)是否存在整數m,使得對于任意正實數x,不等式f(m+x)<f(m)ex恒成立?若存在,求出最小的整數m,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某企業員工500人參加“學雷鋒”志愿活動,按年齡分組:第1組[25,30),第2組[30,35),第3組[35,40),第4組[40,45),第5組[45,50],得到的頻率分布直方圖如圖:
(1)如表是年齡的頻數分布表,求a,b的值;

區間

[25,30)

[30,35)

[35,40)

[40,45)

[45,50]

人數

50

50

a

150

b


(2)根據頻率分布直方圖估計志愿者年齡的平均數和中位數;
(3)現在要從年齡較小的第1,2,3組中用分層抽樣的方法抽取6人,則年齡在第1,2,3組的分別抽取多少人?
(4)在(3)的前提下,從這6人中隨機抽取2人參加社區宣傳交流活動,求至少有1人年齡在第3組的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=ax2﹣2ax+b,當x∈[0,3]時,|f(x)|≤1恒成立,則2a+b的最大值為

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视