【題目】某工廠擬建一座平面圖(如右圖所示)為矩形且面積為200平方米的三級污水處理池,由于地形限制,長、寬都不能超過16米,如果池外周壁建造單價為每米400元,中間兩條隔墻建造單價為每米248元,池底建造單價為每平方米80元(池壁厚度忽略不計,且池無蓋).
(1)寫出總造價y(元)與污水處理池長x(米)的函數關系式,并指出其定義域;
(2)求污水處理池的長和寬各為多少時,污水處理池的總造價最低?并求最低總造價.
科目:高中數學 來源: 題型:
【題目】我們在求高次方程或超越方程的近似解時常用二分法求解,在實際生活中還有三分法.比如借助天平鑒別假幣.有三枚形狀大小完全相同的硬幣,其中有一假幣(質量較輕),把兩枚硬幣放在天平的兩端,若天平平衡,則剩余一枚為假幣,若天平不平衡,較輕的一端放的硬幣為假幣.現有 27 枚這樣的硬幣,其中有一枚是假幣(質量較輕),如果只有一臺天平,則一定能找到這枚假幣所需要使用天平的最少次數為( )
A.2B.3C.4D.5
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
.
(Ⅰ)若為偶函數,求
的值并寫出
的增區間;
(Ⅱ)若關于的不等式
的解集為
,當
時,求
的最小值;
(Ⅲ)對任意的,
,不等式
恒成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在“楊輝三角”中,去除所有為1的項,依次構成數列2,3,3,4,6,4,5,10,10,5,…,則此數列前21項的和為_______________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某溫室大棚規定,一天中,從中午12點到第二天上午8點為保溫時段,其余4小時為工作作業時段,從中午12點連續測量20小時,得出此溫室大棚的溫度y(單位:度)與時間t(單位:小時,)近似地滿足函數
關系,其中,b為大棚內一天中保溫時段的通風量。
(1)若一天中保溫時段的通風量保持100個單位不變,求大棚一天中保溫時段的最低溫度(精確到0.1℃);
(2)若要保持一天中保溫時段的最低溫度不小于17℃,求大棚一天中保溫時段通風量的最小值。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com