【題目】某禮品店要制作一批長方體包裝盒,材料是邊長為的正方形紙板.如圖所示,先在其中相鄰兩個角處各切去一個邊長是
的正方形,然后在余下兩個角處各切去一個長、寬分別為
、
的矩形,再將剩余部分沿圖中的虛線折起,做成一個有蓋的長方體包裝盒.
(1)求包裝盒的容積關于
的函數表達式,并求函數的定義域;
(2)當為多少時,包裝盒的容積最大?最大容積是多少?
科目:高中數學 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)的焦點為F,A為C上異于原點的任意一點,過點A的直線l交C于另一點B,交x軸的正半軸于點D,且有丨FA丨=丨FD丨.當點A的橫坐標為3時,△ADF為正三角形.
(1)求C的方程;
(2)若直線l1∥l,且l1和C有且只有一個公共點E,
(ⅰ)證明直線AE過定點,并求出定點坐標;
(ⅱ)△ABE的面積是否存在最小值?若存在,請求出最小值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點,
是函數
(
,
)圖象上的任意兩點,且角
的終邊經過點
,若
時,
的最小值為
.
(1)求函數的解析式;
(2)當時,不等式
恒成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖是一個半圓形湖面景點的平面示意圖.已知為直徑,且
km,
為圓心,
為圓周上靠近
的一點,
為圓周上靠近
的一點,且
∥
.現在準備從
經過
到
建造一條觀光路線,其中
到
是圓弧
,
到
是線段
.設
,觀光路線總長為
.
(1)求關于
的函數解析式,并指出該函數的定義域;
(2)求觀光路線總長的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,F1 , F2分別為橢圓 +
=1(a>b>0)的左、右焦點,頂點B的坐標為(0,b),連接BF2并延長交橢圓于點A,過點A作x軸的垂線交橢圓于另一點C,連接F1C.
(1)若點C的坐標為( ,
),且BF2=
,求橢圓的方程;
(2)若F1C⊥AB,求橢圓離心率e的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列{an}的前n項和為Sn , 若對任意的正整數n,總存在正整數m,使得Sn=am , 則稱{an}是“H數列”.
(1)若數列{an}的前n項和為Sn=2n(n∈N*),證明:{an}是“H數列”;
(2)設{an}是等差數列,其首項a1=1,公差d<0,若{an}是“H數列”,求d的值;
(3)證明:對任意的等差數列{an},總存在兩個“H數列”{bn}和{cn},使得an=bn+cn(n∈N*)成立.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,傾斜角為 的直線l與曲線C:
,(α為參數)交于A,B兩點,且|AB|=2,以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,則直線l的極坐標方程是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】學校舉辦的集體活動中,設計了如下有獎闖關游戲:參賽選手按第一關、第二關、第三關的順序依次闖關,若闖關成功,分別獲得1分、2分、3分的獎勵,游戲還規定,當選手闖過一關后,可以選擇得到相應的分數,結束游戲;也可以選擇繼續闖下一關,若有任何一關沒有闖關成功,則全部分數都歸零,游戲結束。設選手甲第一關、第二關、第三關的概率分別為,
,
,選手選擇繼續闖關的概率均為
,且各關之間闖關成功互不影響
(I)求選手甲第一關闖關成功且所得分數為零的概率
(II)設該學生所得總分數為X,求X的分布列與數學期望
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com