【題目】若函數f(x)=kax﹣a﹣x(a>0且a≠1)在(﹣∞,+∞)上既是奇函數又是增函數,則函數g(x)=loga(x+k)的圖象是( )
A.
B.
C.
D.
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和Sn=kcn﹣k(其中c,k為常數),且a2=4,a6=8a3 .
(1)求an;
(2)求數列{nan}的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,平面平面
,四邊形
為矩形,
,點
為
的中點.
(1)證明: 平面
.
(2)點為
上任意一點,在線段
上是否存在點
,使得
?若存在,確定點
的位置,并加以證明;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(選修4﹣4:坐標系與參數方程)
已知直線l過點P(﹣1,2),且傾斜角為 ,圓方程為
.
(1)求直線l的參數方程;
(2)設直線l與圓交與M、N兩點,求|PM||PN|的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且cos2 ﹣sinBsinC=
.
(1)求A;
(2)若a=4,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,直三棱柱ABC﹣A′B′C′中,AA′=2AC=2BC,E為AA′的中點,C′E⊥BE.
(1)求證:C′E⊥平面BCE;
(2)求直線AB′與平面BEC′所成角的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直三棱柱ABC-A1B1C1中,已知AC⊥BC,BC=CC1,設AB1的中點為D,B1C∩BC1=E.
求證:(1)DE∥平面AA1C1C;
(2)BC1⊥AB1.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com