精英家教網 > 高中數學 > 題目詳情

【題目】給出條件:①;②;③;④;使得函數,對任意,都使成立的條件序號是()

A.①③B.②④C.③④D.②③

【答案】B

【解析】

根據奇(偶)函數的定義判斷出函數是偶函數,再判斷出函數的單調性,利用偶函數圖象關于y軸對稱,判斷所給的四個條件是否符合條件.

∵函數f(﹣x)=sin2(﹣x+(﹣x2sin2x+x2fx),

∴函數fx)是偶函數

又∵ysinx上是增函數,yx2上是增函數,

∴函數fx)=sin2x+x2上是增函數,在上是減函數,

x1x2x1|x2|中的條件都不能保證fx1)<fx2)成立,

對于②④,當,|x1||x2|時,都有x12x22保證fx1)<fx2)成立,

故選:B

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AD∥BC,ADC=PAB=90°,BC=CD=AD.E為棱AD的中點,異面直線PA與CD所成的角為90°.

(I)在平面PAB內找一點M,使得直線CM∥平面PBE,并說明理由;

(II)若二面角P-CD-A的大小為45°,求直線PA與平面PCE所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知多面體,,均垂直于平面,,,

(1)證明:⊥平面;

(2)求直線與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知為定義在實數集上的函數,把方程稱為函數的特征方程,特征方程的兩個實根、),稱為的特征根.

(1)討論函數的奇偶性,并說明理由;

(2)已知為給定實數,求的表達式;

(3)把函數的最大值記作,最小值記作,研究函數,的單調性,令,若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知一列函數,設直線的交點為,點軸和直線上的射影分別為,記的面積為,的面積為.

1)求的最小值,并指出此時的取值;

2)在中任取一個函數,求該函數在上是增函數或在上是減函數的概率;

3)是否存在正整數,使得成立,若存在,求出的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公園草坪上有一扇形小徑(如圖),扇形半徑為,中心角為,甲由扇形中心出發沿以每秒2米的速度向快走,同時乙從出發,沿扇形弧以每秒米的速度向慢跑,記秒時甲、乙兩人所在位置分別為,,通過計算,判斷下列說法是否正確:

(1)當時,函數取最小值;

(2)函數在區間上是增函數;

(3)若最小,則

(4)上至少有兩個零點;

其中正確的判斷序號是______(把你認為正確的判斷序號都填上)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某社會機構為了調查對手機游戲的興趣與年齡的關系,通過問卷調查,整理數據得如下列聯表:

1)根據列聯表,能否有99.9%的把握認為對手機游戲的興趣程度與年齡有關?

2)若已經從40歲以下的被調查者中用分層抽樣的方式抽取了5名,現從這5名被調查者中隨機選取3名,求這3名被調查者中恰有1名對手機游戲無興趣的概率.

附:

參考數據:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】古希臘時期,人們認為最美人體的頭頂至肚臍的長度與肚臍至足底的長度之比是≈0.618,稱為黃金分割比例),著名的“斷臂維納斯”便是如此.此外,最美人體的頭頂至咽喉的長度與咽喉至肚臍的長度之比也是.若某人滿足上述兩個黃金分割比例,且腿長為105cm,頭頂至脖子下端的長度為26 cm,則其身高可能是

A. 165 cmB. 175 cmC. 185 cmD. 190cm

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)=ax2-a-lnx,其中a ∈R.

(I)討論f(x)的單調性;

(II)確定a的所有可能取值,使得在區間(1,+∞)內恒成立(e=2.718…為自然對數的底數)。

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视