精英家教網 > 高中數學 > 題目詳情

【題目】小明需要購買單價為3元的某種筆記本.他現有10元錢,設他購買時所花的錢數為自變量x(單位:元),筆記本的個數為y(單位:個),若y可以表示為x的函數,則這個函數的定義域為

【答案】{3,6,9}
【解析】解:顯然y= x,

y=1時,x=3,

y=2時,x=6,

y=3時,x=9,

故函數的定義域是:{3,6,9},

所以答案是:{3,6,9}.

【考點精析】掌握函數的定義域及其求法是解答本題的根本,需要知道求函數的定義域時,一般遵循以下原則:①是整式時,定義域是全體實數;②是分式函數時,定義域是使分母不為零的一切實數;③是偶次根式時,定義域是使被開方式為非負值時的實數的集合;④對數函數的真數大于零,當對數或指數函數的底數中含變量時,底數須大于零且不等于1,零(負)指數冪的底數不能為零.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,半徑為1,圓心角為 的圓弧 上有一點C.
(1)若C為圓弧AB的中點,點D在線段OA上運動,求| |的最小值;
(2)若D,E分別為線段OA,OB的中點,當C在圓弧 上運動時,求 的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若cosα=﹣ ,α是第三象限的角,則
(1)求sin(α+ )的值;
(2)求tan2α

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】給定兩個命題p:函數y=x2+8ax+1在[﹣1,1]上單調遞增;q:方程 =1表示雙曲線,如果命題“p∧q”為假命題,“p∨q”為真命題,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】四棱錐P﹣ABCD中,PB⊥底面ABCD,CD⊥PD.底面ABCD為直角梯形,AD∥BC,AB⊥BC,AB=AD=PB=3.點E在棱PA上,且PE=2EA. (Ⅰ)求異面直線PA與CD所成的角;
(Ⅱ)求證:PC∥平面EBD;
(Ⅲ)求二面角A﹣BE﹣D的大。ㄓ梅慈呛瘮当硎荆

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x2﹣4x+1.

( I)當x∈[0,3]時,畫出函數y=f(x)的圖象并寫出值域;
(II)若函數y=f(x)在區間[a,a+1]上單調,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線l在x軸上的截距比在y軸上的截距大1,且過點(6,-2),求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】
(1)已知點M(1,-3),N(1,2),P(5,y),且∠NMP=90°,則log8(7+y)=.
(2)若把本題中“∠NMP=90°”改為“log8(7+y)= ”,其他條件不變,則∠NMP=.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在 中, , ,點 邊上,且 ,

(I)求 ;
(II)求 的長.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视