【題目】某同學用“五點法”畫函數f(x)=Asin(ωx+φ)(ω>0,|φ|< )在某一個周期內的圖象時,列表并填入了部分數據,如表:
ωx+φ | 0 | π | 2π | ||
x | |||||
Asin(ωx+φ) | 0 | 5 | ﹣5 | 0 |
(1)請將上表數據補充完整,填寫在相應位置,并直接寫出函數f(x)的解析式;
(2)將y=f(x)圖象上所有點向左平行移動θ(θ>0)個單位長度,得到y=g(x)的圖象.若y=g(x)圖象的一個對稱中心為( ,0),求θ的最小值.
【答案】
(1)解:根據表中已知數據,解得A=5,ω=2,φ=﹣ .數據補全如下表:
ωx+φ | 0 | π | 2π | ||
x | |||||
Asin(ωx+φ) | 0 | 5 | 0 | ﹣5 | 0 |
且函數表達式為f(x)=5sin(2x﹣ )
(2)解:由(Ⅰ)知f(x)=5sin(2x﹣ ),得g(x)=5sin(2x+2θ﹣
).
因為y=sinx的對稱中心為(kπ,0),k∈Z.
令2x+2θ﹣ =kπ,解得x=
,k∈Z.
由于函數y=g(x)的圖象關于點( ,0)成中心對稱,令
=
,
解得θ= ,k∈Z.由θ>0可知,當K=1時,θ取得最小值
【解析】(1)根據表中已知數據,解得A=5,ω=2,φ=﹣ .從而可補全數據,解得函數表達式為f(x)=5sin(2x﹣
).(2)由(Ⅰ)及函數y=Asin(ωx+φ)的圖象變換規律得g(x)=5sin(2x+2θ﹣
).令2x+2θ﹣
=kπ,解得x=
,k∈Z.令
=
,解得θ=
,k∈Z.由θ>0可得解.
科目:高中數學 來源: 題型:
【題目】某工廠組織工人技能培訓,其中甲、乙兩名技工在培訓時進行的5次技能測試中的成績如圖莖葉圖所示. (Ⅰ)現要從中選派一人參加技能大賽,從這兩名技工的測試成績分析,派誰參加更合適;
(Ⅱ)若將頻率視為概率,對選派參加技能大賽的技工在今后三次技能大賽的成績進行預測,記這三次成績中高于85分的次數為ξ,求ξ的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等比數列{an}滿足 ,n∈N* . (Ⅰ)求數列{an}的通項公式;
(Ⅱ)設數列{an}的前n項和為Sn , 若不等式Sn>kan﹣2對一切n∈N*恒成立,求實數k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(理科答)已知數列{an}及等差數列{bn},若a1=3,an= an﹣1+1(n≥2),a1=b2 , 2a3+a2=b4 ,
(1)證明數列{an﹣2}為等比數列;
(2)求數列{an}及數列{bn}的通項公式;
(3)設數列{anbn}的前n項和為Tn , 求Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,側棱PD⊥底面ABCD,E是PC的中點,求證: (Ⅰ)PA∥平面EDB
(Ⅱ)AD⊥PC.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知棱長為1的正方體ABCD﹣A1B1C1D1中,E,F分別是棱B1C1 , C1D1的中點. (Ⅰ)求AD1與EF所成角的大;
(Ⅱ)求AF與平面BEB1所成角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學高三年級從甲、乙兩個班級各選出7名學生參加數學競賽,他們取得的成績(滿分100分)的莖葉圖如圖,其中甲班學生的平均分是85,乙班學生成績的中位數是83.
(1)求x和y的值;
(2)計算甲班7位學生成績的方差s2;
(3)從成績在90分以上的學生中隨機抽取兩名學生,求甲班至少有一名學生的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設F1 , F2分別是橢圓E: =1(a>b>0)的左、右焦點,過F1傾斜角為45°的直線l與E相交于A,B兩點,且|AB|=
(Ⅰ)求E的離心率
(Ⅱ)設點P(0,﹣1)滿足|PA|=|PB|,求E的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com