精英家教網 > 高中數學 > 題目詳情

【題目】已知f(x)= ,若不等式 對任意的 恒成立,則整數λ的最小值為

【答案】1
【解析】解:∵f(x)= ,

令f(x)>﹣

解得:x> ,

若對任意θ∈[0, ],不等式f(cos2θ+λsinθ﹣ )+ ≥0恒成立,

則對任意θ∈[0, ],cos2θ+λsinθ﹣ 恒成立,

即1﹣sin2θ+λsinθ﹣ 恒成立,

當θ=0時,不等式恒成立,

當θ≠0時,1﹣sin2θ+λsinθ﹣ 可化為:λ≥ =sinθ﹣

當θ= 時,sinθ﹣ 取最大值 ,

故λ> ,

故整數λ的最小值為1,

故答案為:1.

令f(x)>﹣ ,解得:x> ,若對任意θ∈[0, ],不等式f(cos2θ+λsinθ﹣ )+ ≥0恒成立,則對任意θ∈[0, ],cos2θ+λsinθ﹣ 恒成立,進而得到答案.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知實數x1 , x2 , x3 , x4 , x5滿足0<x1<x2<x3<x4<x5
(1)求證不等式x12+x22+x32+x42+x52>x1x2+x2x3+x3x4+x4x5+x5x1
(2)隨機變量X取值 的概率均為 ,隨機變量Y取值 的概率也均為 ,比較DX與DY大小關系.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線 ,焦點到準線的距離為4,過點 的直線交拋物線于 兩點.
(Ⅰ)求拋物線的方程;
(Ⅱ)如果點 恰是線段 的中點,求直線 的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】經市場調查,某商品在過去的100天內的銷售量(單位:)和價格(單位:)均為時間 (單位:)的函數,且銷售量滿足=,價格滿足=.

(1)求該種商品的日銷售額與時間的函數關系;

(2)若銷售額超過16610,商家認為該商品的收益達到理想程度,請判斷該商品在哪幾天的收益達到理想程度?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數是偶函數,且.

(1)求的值;

(2)求函數上的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直三棱柱ABC﹣A1B1C1中,∠ABC=90°,E、F分別為A1C1、B1C1的中點,D為棱CC1上任一點.
(Ⅰ)求證:直線EF∥平面ABD;
(Ⅱ)求證:平面ABD⊥平面BCC1B1

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數, .

(1)若函數上是減函數,求實數的取值范圍;

(2)是否存在整數,使得的解集恰好是,若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x2﹣mx對任意的x1 , x2∈[0,2],都有|f(x2)﹣f(x1)|≤9,求實數m的取值范圍

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1,M,N分別是A1B,B1C1的中點.

(1)求證:MN⊥平面A1BC;

(2)求直線BC1和平面A1BC所成的角的大小.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视