【題目】已知函數.
(1)當時,求函數
的單調區間;
(2)當時,證明:
(其中e為自然對數的底數).
【答案】(1)當時,
的遞增區間為
;
當時,
的遞增區間為
,
,遞減區間為
;
當時,
的遞增區間為
,
,遞減區間為
;
(2)見解析
【解析】
(1)求出函數的導數,通過討論的取值范圍,求出函數的單調區間即可.
(2)問題轉化為,令
,根據函數的單調性證明即可.
(1)由題意,函數的定義域為
,
當時,
恒成立,故
的遞增區間為
;
當時,在區間
,
時
,
時
,
所以的遞增區間為
,
,遞減區間為
;
當時,在區間
,
時
,
時
,
所以的遞增區間為
,
,遞減區間為
;
綜上所述,當時,
的遞增區間為
;
當時,
的遞增區間為
,
,遞減區間為
;
當時,
的遞增區間為
,
,遞減區間為
;
(2)當時,由
,只需證明
.
令
,
.
設,則
.
當時,
,
單調遞減;
當時,
,
單調遞增,
∴當時,
取得唯一的極小值,也是最小值.
的最小值是
成立.
故成立.
科目:高中數學 來源: 題型:
【題目】某公司為了確定下一年度投入某種產品的宣傳費用,需了解年宣傳費(單位:萬元)對年銷量
(單位:噸)和年利潤(單位:萬元)的影響對近6年宣傳費
和年銷量
的數據做了初步統計,得到如下數據:
年份 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年宣傳費 | 38 | 48 | 58 | 68 | 78 | 88 |
年銷售量 | 16.8 | 18.8 | 20.7 | 22.4 | 24.0 | 25.5 |
經電腦模擬,發現年宣傳費(萬元)與年銷售量
(噸)之間近似滿足關系式
,兩邊取對數,即
,令
,即
對上述數據作了初步處理,得到相關的值如下表:
75.3 | 24.6 | 18.3 | 101.4 |
(1)從表中所給出的6年年銷售量數據中任選2年做年銷售量的調研,求所選數據中至多有一年年銷售量低于21噸的概率.
(2)根據所給數據,求關于
的回歸方程;
(3)若生產該產品的固定成本為200(萬元),且每生產1(噸)產品的生產成本為20(萬元)(總成本=固定成本+生產成本+年宣傳費),銷售收入為(萬元),假定該產品產銷平衡(即生產的產品都能賣掉),2019年該公司計劃投入108萬元宣傳費,你認為該決策合理嗎?請說明理由.(其中
為自然對數的底數,
)
附:對于一組數據,其回歸直線
中的斜率和截距的最小二乘估計分別為
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】市某機構為了調查該市市民對我國申辦
年足球世界杯的態度,隨機選取了
位市民進行調查,調查結果統計如下:
支持 | 不支持 | 合計 | |
男性市民 | |||
女性市民 | |||
合計 |
(1)根據已知數據,把表格數據填寫完整;
(2)利用(1)完成的表格數據回答下列問題:
(i)能否在犯錯誤的概率不超過的前提下認為支持申辦足球世界杯與性別有關;
(ii)已知在被調查的支持申辦足球世界杯的男性市民中有位退休老人,其中
位是教師,現從這
位退休老人中隨機抽取
人,求至多有
位老師的概率.
附:,其中
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在 △ABC 中,設 a,b,c 分別是角 A,B,C 的對邊,已知向量 = (a,sinC-sinB),
= (b + c,sinA + sinB),且
(1) 求角 C 的大小
(2) 若 c = 3, 求 △ABC 的周長的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某廠生產產品x件的總成本c(x)=1200+ x3(萬元),已知產品單價P(萬元)與產品件數x滿足:p2=
,生產100件這樣的產品單價為50萬元.
(1)設產量為x件時,總利潤為L(x)(萬元),求L(x)的解析式;
(2)產量x定為多少件時總利潤L(x)(萬元)最大?并求最大值(精確到1萬元).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解中學生對交通安全知識的掌握情況,從農村中學和城鎮中學各選取100名同學進行交通安全知識競賽.下圖1和圖2分別是對農村中學和城鎮中學參加競賽的學生成績按,
,
,
分組,得到的頻率分布直方圖.
(Ⅰ)分別估算參加這次知識競賽的農村中學和城鎮中學的平均成績;
(Ⅱ)完成下面列聯表,并回答是否有
的把握認為“農村中學和城鎮中學的學生對交通安全知識的掌握情況有顯著差異”?
成績小于60分人數 | 成績不小于60分人數 | 合計 | |
農村中學 | |||
城鎮中學 | |||
合計 |
附:
臨界值表:
0.10 | 0.05 | 0.010 | |
2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分)如圖,在三棱柱ABC-A1B1C1中,側棱垂直于底面,AB⊥BC,E、F分別為A1C1和BC的中點.
(1)求證:平面ABE⊥平面B1BCC1;
(2)求證:C1F//平面ABE.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com