精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)=Asin(ωx+φ)+B(A>0,ω>0)的一系列對應值如下表:

x

y

﹣1

1

3

1

﹣1

1

3


(1)根據表格提供的數據求函數f(x)的一個解析式.
(2)根據(1)的結果,若函數y=f(kx)(k>0)周期為 ,當 時,方程f(kx)=m恰有兩個不同的解,求實數m的取值范圍.

【答案】
(1)解:設f(x)的最小正周期為T,得 ,

,得ω=1,

,解得

,即 ,解得 ,


(2)解:∵函數 的周期為 ,

又k>0,∴k=3,

,∵ ,∴ ,

如圖,sint=s在 上有兩個不同的解,則 ,

∴方程f(kx)=m在 時恰好有兩個不同的解,則 ,

即實數m的取值范圍是


【解析】(1)根據表格提供的數據,求出周期T,解出ω,利用最小值、最大值求出A、B,結合周期求出φ,可求函數f(x)的一個解析式.(2)函數y=f(kx)(k>0)周期為 ,求出k, ,推出 的范圍,畫出圖象,數形結合容易求出m的范圍.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】為得到函數y=sin(x+ )的圖象,可將函數y=sinx的圖象向左平移m個單位長度,或向右平移n個單位長度(m,n均為正數),則|m﹣n|的最小值是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)若函數在其定義域內為增函數,求實數的取值范圍;

(3)設函數,若在上至少存在一點,使得成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若不等式|2x﹣1|﹣|x+a|≥a對任意的實數x恒成立,則實數a的取值范圍是(
A.(﹣∞,﹣ ]
B.(﹣ ,﹣ ]
C.(﹣ ,0)
D.(﹣∞,﹣ ]

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的一個焦點與拋物線的焦點相同 ,為橢圓的左、右焦點為橢圓上任意一點,面積的最大值為1

1求橢圓的方程;

2直線交橢圓,兩點

i若直線的斜率分別為,,求證直線過定點并求出該定點的坐標;

ii若直線的斜率時直線,斜率的等比中項,求△面積的取值范圍

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】要得到函數y=sin2x的圖象,只要將y=sin(2x+ )函數的圖象(
A.向左平移 個單位
B.向右平移 個單位
C.向左平移 個單位
D.向右平移 個單位

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設a為實數,函數f(x)=2x2+(x﹣a)|x﹣a|.
(1)若f(0)≥1,求a的取值范圍;
(2)求f(x)的最小值;
(3)設函數h(x)=f(x),x∈(a,+∞),求不等式h(x)≥1的解集.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知在平面直角坐標系中的一個橢圓,它的中心在原點,左焦點為,右頂點為,設點.

(1)求該橢圓的標準方程;

(2)若是橢圓上的動點,求線段中點的軌跡方程;

(3)過原點的直線交橢圓于點,求面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知△OAB的頂點坐標為O(0,0),A(2,9),B(6,﹣3),點P的橫坐標為14,且 ,點Q是邊AB上一點,且
(1)求實數λ的值與點P的坐標;
(2)求點Q的坐標;
(3)若R為線段OQ上的一個動點,試求 的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视