【題目】如圖,在三棱柱中,
是邊長為2的等邊三角形,
,
,
.
(1)證明:平面平面
;
(2),
分別是
,
的中點,
是線段
上的動點,若二面角
的平面角的大小為
,試確定點
的位置.
【答案】(1)證明見解析;(2)為線段
上靠近
點的四等分點,且坐標為
【解析】
(1)先通過線面垂直的判定定理證明平面
,再根據面面垂直的判定定理即可證明;
(2)分析位置關系并建立空間直角坐標系,根據二面角的余弦值與平面法向量夾角的余弦值之間的關系,即可計算出
的坐標從而位置可確定.
(1)證明:因為,
,
,
所以,即
.
又因為,
,所以
,
,所以
平面
.
因為平面
,所以平面
平面
.
(2)解:連接,因為
,
是
的中點,所以
.
由(1)知,平面平面
,所以
平面
.
以為原點建立如圖所示的空間直角坐標系
,
則平面的一個法向量是
,
,
,
.
設,
,
,
,
代入上式得,
,
,所以
.
設平面的一個法向量為
,
,
,
由,得
.
令,得
.
因為二面角的平面角的大小為
,
所以,即
,解得
.
所以點為線段
上靠近
點的四等分點,且坐標為
.
科目:高中數學 來源: 題型:
【題目】為調研高中生的作文水平.在某市普通高中的某次聯考中,參考的文科生與理科生人數之比為,且成績分布在
的范圍內,規定分數在50以上(含50)的作文被評為“優秀作文”,按文理科用分層抽樣的方法抽取400人的成績作為樣本,得到成績的頻率分布直方圖,如圖所示.其中
構成以2為公比的等比數列.
(1)求的值;
(2)填寫下面列聯表,能否在犯錯誤的概率不超過0.01的情況下認為“獲得優秀作文”與“學生的文理科”有關?
文科生 | 理科生 | 合計 | |
獲獎 | 6 | ||
不獲獎 | |||
合計 | 400 |
(3)將上述調查所得的頻率視為概率,現從全市參考學生中,任意抽取2名學生,記“獲得優秀作文”的學生人數為,求
的分布列及數學期望.
附:,其中
.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業生產甲、乙兩種產品,銷售利潤分別為2千元/件、1千元/件.甲、乙兩種產品都需要在兩種設備上加工,生產一件甲產品需用
設備2小時,
設備6小時;生產一件乙產品需用
設備3小時,
設備1小時.
兩種設備每月可使用時間數分別為480小時、960小時,若生產的產品都能及時售出,則該企業每月利潤的最大值為( )
A. 320千元 B. 360千元 C. 400千元 D. 440千元
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市2019年引進天然氣作為能源,并將該項目工程承包給中昱公司.已知中昱公司為該市鋪設天然氣管道的固定成本為35萬元,每年的管道維修此用為5萬元.此外,該市若開通千戶使用天然氣用戶
,公司每年還需投入成本
萬元,且
.通過市場調研,公司決定從每戶天然氣新用戶征收開戶費用2500元,且用戶開通天然氣后,公司每年平均從每戶使用天然氣的過程中獲利360元.
(1)設該市2019年共發展使用天然氣用戶千戶,求中昱公司這一年利潤
(萬元)關于
的函數關系式;
(2)在(1)的條件下,當等于多少
最大?且
最大值為多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某啤酒廠要將一批鮮啤酒用汽車從所在城市甲運至城市乙,已知從城市甲到城市乙只有兩條公路,運費由廠家承擔.若廠家恰能在約定日期(×月×日)將啤酒送到,則城市乙的銷售商一次性支付給廠家40萬元;若在約定日期前送到,每提前一天銷售商將多支付給廠家2萬;若在約定日期后送到,每遲到一天銷售商將少支付給廠家2萬元.為保證啤酒新鮮度,汽車只能在約定日期的前兩天出發,且只能選擇其中的一條公路運送.已知下表內的信息:
汽車行駛路線 | 在不堵車的情況下到達城市乙所需時間(天) | 在堵車的情況下到達城市乙所需時間(天) | 堵車的概率 | 運費(萬元) |
公路1 | 1 | 4 | 2 | |
公路2 | 2 | 3 | 1 |
(1)記汽車選擇公路1運送啤酒時廠家獲得的毛收入為X(單位:萬元),求X的分布列和EX;
(2)若,
,選擇哪條公路運送啤酒廠家獲得的毛收人更多?
(注:毛收入=銷售商支付給廠家的費用-運費).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《易經》是中國傳統文化中的精髓,如圖是易經八卦(含乾、坤、巽、震、坎、離、艮、兌八卦),每一卦由三根線組成(""表示一根陽線,"
"表示一根陰線),從八卦中任取兩卦,這兩卦的六根線中恰有兩根陽線,四根陰線的概率為_______.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com