精英家教網 > 高中數學 > 題目詳情

【題目】為調查某地區老年人是否需要志愿者提供幫助,用簡單隨機抽樣方法從該地區調查了500位老年人,結果如下:

需要

40

30

不需要

160

270

(1)估計該地區老年人中,需要志愿者提供幫助的老年人的比例。

(2)能否在犯錯誤的概率不超過百分之一的前提下認為該地區的老年人是否需要志愿者提供幫助與性別有關?

附:

0.050

0.010

0.001

3.841

6.635

10.828

【答案】(1)14%;(2)在犯錯誤的概率不超過百分之一的前提下認為該地區的老年人是否需要幫助與性別有關.

【解析】

(1)由頻率估計概率,求出需要志愿者提供幫助的老人頻率即可;

(2)將數據代入公式,求出,與6.635作比較,若大于6.635則可以.

(1)調查的500名老年人中有70位需要志愿者提供幫助,因此該地區老年人中,需要志愿者提供幫助的老年人的比例的估計值為%=14%

(2),由于9.967>6.635,所以可以在犯錯誤的概率不超過百分之一的前提下認為該地區的老年人是否需要幫助與性別有關。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某快遞公司在某市的貨物轉運中心,擬引進智能機器人分揀系統,以提高分揀效率和降低物流成本,已知購買x臺機器人的總成本p(x)萬元.

(1)若使每臺機器人的平均成本最低,問應買多少臺?

(2)現按(1)中的數量購買機器人,需要安排m人將郵件放在機器人上,機器人將郵件送達指定落袋格口完成分揀,經實驗知,每臺機器人的日平均分揀量q(m) (單位:件),已知傳統人工分揀每人每日的平均分揀量為1200件,問引進機器人后,日平均分揀量達最大值時,用人數量比引進機器人前的用人數量最多可減少百分之幾?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數f(x)=(m2m-1)·是冪函數,對任意x1,x2∈(0,+∞)且x1x2,滿足,若a,b∈R且ab>0,ab<0,則f(a)+f(b)的值(  )

A. 恒大于0 B. 恒小于0

C. 等于0 D. 無法判斷

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線C:y2=2px(p>0)上的點M(x0 , y0)到點N(2,0)距離的最小值為
(1)求拋物線C的方程;
(2)若x0>2,圓E(x﹣1)2+y2=1,過M作圓E的兩條切線分別交y軸A(0,a),B(0,b)兩點,求△MAB面積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某理科考生參加自主招生面試,從7道題中(4道理科題3道文科題)不放回地依次任取3道作答.

1)求該考生在第一次抽到理科題的條件下,第二次和第三次均抽到文科題的概率;

2)規定理科考生需作答兩道理科題和一道文科題,該考生答對理科題的概率均為,答對文科題的概率均為,若每題答對得10分,否則得零分.現該生已抽到三道題(兩理一文),求其所得總分的分布列與數學期望

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】制定投資計劃時,不僅要考慮可能獲得的盈利,而且要考慮可能出現的虧損.某投資人打算投資甲、乙兩個項目.根據預測,甲、乙項目可能的最大盈利率分別為100%50%,可能的最大虧損分別為30%10%.投資人計劃投資金額不超過10萬元,要求確保可能的資金虧損不超過1.8萬元.問投資人對甲、乙兩個項目各投資多少萬元,才能使可能的盈利最大?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(Ⅰ)求的單調區間;

(Ⅱ)若,若對任意,存在,使得 成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中xOy,直線C1的參數方程為 (t是參數).在以坐標原點為極點,x軸非負半軸為極軸的極坐標系中,曲線C2的極坐標方程為ρ=sinθ﹣cosθ(θ是參數).
(Ⅰ)將曲線C2的極坐標方程化為直角坐標方程,并判斷曲線C2所表示的曲線;
(Ⅱ)若M為曲線C2上的一個動點,求點M到直線C1的距離的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 (m>0)的最大值為2.
(1)求函數,f(x)在[0,π]上的單調遞減區間;
(2)△ABC中,a,b,c分別是角A,B,C所對的邊,C=60°,c=3,且 ,求△ABC的面積.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视