【題目】如圖,已知圓柱內有一個三棱錐,
為圓柱的一條母線,
,
為下底面圓
的直徑,
.
(Ⅰ)在圓柱的上底面圓內是否存在一點,使得
平面
?證明你的結論.
(Ⅱ)設點為棱
的中點,
,求四棱錐
體積的最大值.
科目:高中數學 來源: 題型:
【題目】已知空間幾何體是由圓柱切割而成的陰影部分構成,其中
,
為下底面圓直徑的兩個端點,
,
為上底面圓直徑的兩個端點,且
,圓柱底面半徑是1,高是2,則空間幾何體
可以無縫的穿過下列哪個圖形( )
A.橢圓B.等腰直角三角形C.正三角形D.正方形
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2020年1月10日,引發新冠肺炎疫情的COVID-9病毒基因序列公布后,科學家們便開始了病毒疫苗的研究過程.但是類似這種病毒疫苗的研制需要科學的流程,不是一朝一夕能完成的,其中有一步就是做動物試驗.已知一個科研團隊用小白鼠做接種試驗,檢測接種疫苗后是否出現抗體.試驗設計是:每天接種一次,3天為一個接種周期.已知小白鼠接種后當天出現抗體的概率為,假設每次接種后當天是否出現抗體與上次接種無關.
(1)求一個接種周期內出現抗體次數的分布列;
(2)已知每天接種一次花費100元,現有以下兩種試驗方案:
①若在一個接種周期內連續2次出現抗體即終止本周期試驗,進行下一接種周期,試驗持續三個接種周期,設此種試驗方式的花費為元;
②若在一個接種周期內出現2次或3次抗體,該周期結束后終止試驗,已知試驗至多持續三個接種周期,設此種試驗方式的花費為元.
比較隨機變量和
的數學期望的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司以客戶滿意為出發點,隨機抽選2000名客戶,以調查問卷的形式分析影響客戶滿意度的各項因素.每名客戶填寫一個因素,下圖為客戶滿意度分析的帕累托圖.帕累托圖用雙直角坐標系表示,左邊縱坐標表示頻數,右邊縱坐標表示頻率,分析線表示累計頻率,橫坐標表示影響滿意度的各項因素,按影響程度(即頻數)的大小從左到右排列,以下結論正確的個數是( ).
①35.6%的客戶認為態度良好影響他們的滿意度;
②156位客戶認為使用禮貌用語影響他們的滿意度;
③最影響客戶滿意度的因素是電話接起快速;
④不超過10%的客戶認為工單派發準確影響他們的滿意度.
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,三棱柱中,
底面
,點
是棱
的中點.
(Ⅰ)求證:平面
;
(Ⅱ)若,
,在棱
上是否存在點
,使二面角
的大小為
,若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,以橢圓的2個焦點與1個短軸端點為頂點的三角形的面積為2
。
(1)求橢圓的方程;
(2)如圖,斜率為k的直線l過橢圓的右焦點F,且與橢圓交與A,B兩點,以線段AB為直徑的圓截直線x=1所得的弦的長度為,求直線l的方程。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線
的參數方程為
.(
為參數)以坐標原點
為極點,
軸的正半軸為極軸建立極坐標系,點
的極坐標為
,直線
的極坐標方程為
.
(1)求的直角坐標和 l的直角坐標方程;
(2)把曲線上各點的橫坐標伸長為原來的
倍,縱坐標伸長為原來的
倍,得到曲線
,
為
上動點,求
中點
到直線
距離的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com