【題目】【2018屆福建省福州市高三上學期期末】過橢圓的右焦點作
軸的垂線,交
于
兩點,直線
過
的左焦點和上頂點.若以
為直徑的圓與
存在公共點,則
的離心率的取值范圍是( )
A. B.
C.
D.
科目:高中數學 來源: 題型:
【題目】已知圓C過點M(0,-2)、N(3,1),且圓心C在直線x+2y+1=0上.
(1)求圓C的方程;
(2)設直線ax-y+1=0與圓C交于A,B兩點,是否存在實數a,使得過點P(2,0)的直線l垂直平分弦AB?若存在,求出實數a的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,已知圓的圓心坐標為
,半徑為
,以坐標原點為極點,
軸正半軸為極軸,建立極坐標系,直線
的參數方程為:
(
為參數)
(1)求圓和直線
的極坐標方程;
(2)點 的極坐標為
,直線
與圓
相較于
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知射手甲射擊一次,命中9環(含9環)以上的概率為0.56,命中8環的概率為0.22,命中7環的概率為0.12.
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(1)求甲射擊一次,命中不足8環的概率;
(2)求甲射擊一次,至少命中7環的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分)
如圖,在四棱錐P—ABCD中,側面PAD⊥底面ABCD,側棱PA=PD=,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O為AD中點.
(Ⅰ)求證:PO⊥平面ABCD;
(Ⅱ)求異面直線PB與CD所成角的余弦值;
(Ⅲ)求點A到平面PCD的距離.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com